MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

Course Curriculum of Bachelor of Science (B.Sc.) in Civil Engineering

DEPARTMENT OF CIVIL ENGINEERING

January 2024

Table of Contents

1. INTRODUCTION 1.1. Introduction of MIST	06
1.1 Introduction of MIST	
	06
1.2. Vision and Mission of MIST	06
1.3. Salient Features of MIST	07
1.4. Location	07
1.5. Faculties	08
1.6. Eligibility of Students for Admission in MIST (Subject to review each y	vear 08
1.7. Number of Seats (Subject to review each year)	09
1.8. Admission Procedure (Subject to review each year)	10
1.9. Students Withdrawal Policy	11
2. RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME A	AT MIST 14
2.1. Introduction	14
2.2. The Course System	14
2.3. Number of Terms in a Year	14
2.4. Duration of Terms	15
2.5. Course Pattern and Credit Structure	15
2.6. Course Designation System	15
2.7. Assignment of Credits	16
2.8. Types of Courses	17
2.9. Course Offering and Instruction	17
2.10. Teacher Student Interaction	17
2.11. Students' Adviser	18
2.12. Course Registration	18
2.13. Registration Procedure	18
2.14. Pre-conditions for Registration	18
2.15. Registration Deadline	19
2.16. Penalty for Late Registration	19
2.17. Limits on the Credit Hours to be Taken	19
2.18. Course Add/Drop	19
2.19. Withdrawal from a Term	20
2.20. The Grading System	20
2.21. Marks Distribution	21
2.22. Calculation of GPA	24
2.23. Minimum Earned Credit and GPA Requirement for Obtaining Degree	25
2.24. Minimum Earned Credit and GPA Requirement for Obtaining Degree	
(Additional Course)	25
2.25. Impacts of Grade Earned	25
2.26. Classification of Students	26
2.27. Definition of Graduating Student	27
2.28. Performance Evaluation	27
2.29. Application for Graduation and Award of Degree	27
2.30. Time Limits for Completion of Bachelor's Degree	27

	2.31.	Attendance, Conduct and Discipline	28
		Teacher-Student Interaction	28
	2.33.	Absence during a Term	28
		Recognition of Performance	28
		Types of Different Examinations (Subject to change for different academic	
		session)	29
	2.36.	Rules of Different Examinations (Subject to change for different academic	
		session)	29
	2.37.	Irregular Graduation	31
3.	DEPA	ARTMENT OF CIVIL ENGINEERING	32
	3.1.	Introduction to the Program	32
	3.2.	Vision and Mission of the Program	32
		Program Educational Objectives (PEOs)	33
		Program Outcomes (POs)	33
		Bloom's Taxonomy	35
	3.6.	Washington Accord	36
		Relationship/Mapping between Mission of the Dept and the Institute	38
		Relationship/Mapping between PEO and Mission of the Dept	39
	3.9.	Relation between PEOs and POs	40
	3.10.	Course Outcomes (COs)	41
	3.11.	Generic Skills	41
	3.12.	Curriculum/ Skill Mapping	42
4.	COU	RSE CURRICULUM FOR BACHELOR DEGREE IN CE	44
т.		Introduction	44
		List of Language, General Education, Mathematics, Basic Science, and	• •
	1.2.	Interdisciplinary Courses	44
	43	List of Core Courses	46
		List of Elective Courses	48
		Term Wise Distribution of Courses for B.Sc. Engg. in Civil Engineering (CE)	50
	4.6.		54
	4.7.	Summary of Theory and Sessional Courses- Level and Termwise	56
	4.8.	Summary of Departmental Theory and Sessional Courses - Level and Termwise	00
		Credit Hours	57
	4.9.	Summary of Credit Hours for Departmental (core and elective), Interdisciplinary,	57
	1.2.	Basic Science. Mathematics, and General Education Courses	58
	4 10	Teaching Strategy	59
		Assessment Strategy	59
5		AILED SYLLABUS OF BASIC SCIENCE, MATHS, GENERAL EDUCATION,	57
5.		GUAGE, AND INTERDISCIPLINARY COURSES	61
	5.1.	Basic Sciences (Physics and Chemistry	61
		Mathematics	95
		General Education Courses	117
		Language	158
	5.5.	Interdisciplinary Courses (EECE, PME, CSE, ARCH)	168
			100

		Page
6.	DETAILED SYLLABUS OF BASIC ENGINEERING COURSES	185
7.	DETAILED SYLLABUS OF DEPARTMENTAL COURSES	
	(CORE AND ELECTIVE)	270
	7.1. Structural Engineering	270
	7.2. Geotechnical Engineering	342
	7.3. Transportation Engineering	380
	7.4. Environmental Engineering	415
	7.5. Water Resource Engineering	462

COMMITTEE FOR COURSE CURRICULUM REVIEW – CE DEPT, MIST

The undergraduate course curriculum of the Department of Civil Engineering (CE) of the Military Institute of Science and Technology (MIST) has been reviewed by the committee as mentioned below.

A. <u>President</u>

Brig Gen Kamal Uddin Komol, psc Head, Department of Civil Engineering Military Institute of Science and Technology

B. <u>Internal Members</u>

1.

2.

Dr Md. Zoynul Abedin Professor, Department of Civil Engineering Military Institute of Science and Technology

Brig Gen Shah Md Muniruzzaman (Rtd.), psc, PhD Professor, Department of CivilEngineering Military Institute of Science and Technology Dr. G. M. Jahid Hasan Professor, Department of Civil Engineering Military Institute of Science and Technology

4. Dr. Md. Tauhid-Ur-Rahman Professor, Department of Civil Engineering Military Institute of Science and Technology

5.

3.

Lt Col Khondaker Sakil Ahmed, PhD, PEng, Engrs Instructor Class 'A', Department of Civil Engineering Military Institute of Science and Technology

6.

Lt Col Mohammed Russedul Islam, PhD Instructor Class 'A', Department of Civil Engineering Military Institute of Science and Technology

7.

Lt Col Md Jahidul Islam, PhD, Engrs Instructor Class 'A', Department of Civil Engineering Military Institute of Science and Technology

C. <u>Members from Science and Humanities Department, MIST</u>

 Lt Col Md Mahbubur Rahman Shah, PhD, AEC Instructor Class 'A', Department of Science & Humanities Military Institute of Science and Technology

2. Lt Col Md Munir Hossain, Mphil, AEC Instructor Class 'A', Department of Science & Humanities Military Institute of Science and Technology

D. <u>Members from BUP</u>

1. Brig Gen Md Mustafa Kamal, SGP Dean, Faculty of Science and Technology Bangladesh University of Professionals

2.

Brig Gen Md Mahbubur Rahman Siddiqui, ndc, afwc, psc, MPhil Inspector of College Bangladesh University of Professionals

E. <u>External Members (Academia)</u>

1.

1.

Dr. Raquib Ahsan Professor, Department of Civil Engineering Bangladesh University of Engineering and Technology

2. <u>Md. Hadiuzzaman</u> Professor, Department of Civil Engineering Bangladesh University of Engineering and Technology

F. <u>External Member (Industry)</u>

Dr. Md. Abdullah Al Mamun, PEng Additional Chief Engineer, Technical Services Wing Roads and Highways Department

CHAPTER 1

GENERAL INFORMATION

1.1 Introduction of MIST

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT), and other foreign institutions of science and technology. With a view to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) that promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. The motto of MIST is -Technology for Advancement. Founded on 19 April 1998, MIST started its journey on 31 January 1999 by offering a fouryear bachelor's degree in Civil Engineering. Bachelor's degree in Computer Science Engineering course started in 2001. Bachelor courses in Electrical, Electronics & Communication Engineering and Mechanical Engineering started its journey from 2003. Bachelor of Science program on Aeronautical Engineering (AE) and Naval Architecture and Marine Engineering (NAME) program were started from 2008-2009 and 2012-2013 respectively. Besides, four new departments started their academic session from 2014-2015 i.e. Nuclear Science & Engineering (NSE), Biomedical Engineering (BME), Architecture (Arch), and Environmental, Water Resources, and Coastal Engineering (EWCE).

Foreign students from Sri Lanka were admitted for the first time at MIST. Presently students from Maldives, Palestine, Nepal, and Gambia are also studying in different Engineering Programs. MIST envisages creating facilities for the military as well as civil students from home and abroad dedicated to pursue standard curriculum leading to Graduation Degree. As an Institution without any gender biasness, MIST is already on steady stride upholding its motto "Technology for Advancement". MIST remains committed to contributing to the wider spectrum of the national educational arena and play a significant role in the development of human resources and ardently pursuing its goal to grow into a "Centre of Excellence". MIST has well-equipped classrooms with multimedia and web cameras with internet facilities and laboratories with modern equipment. The medium of instruction for all engineering programs is English. All academic programs of MIST are affiliated with the Bangladesh University of Professionals (BUP) and have close cooperation with Bangladesh University of Engineering and Technology (BUET) and Dhaka University (DU).

1.2 Vision and Mission of MIST

Vision: To be a center of excellence for providing quality education in the field of science, engineering, and technology and conduct research to meet the national and global challenges.

Mission:

- a. To provide comprehensive education and conduct research in diverse disciplines of science, engineering, technology, and engineering management.
- b. To produce technologically advanced intellectual leaders and professionals with high moral and ethical values to meet the socio-economic development of Bangladesh and global needs.
- c. To conduct collaborative research activities with national and international communities for continuous interaction with academicians and industry.
- d. To provide consultancy, advisory, testing, and other related services to government, non-government, and autonomous organizations including personnel for widening practical knowledge and contributing to the sustainable development of the society.

1.3 <u>Salient Features of MIST</u>

- a. Rigorous admission and selection process for the best possible screening interactive sessions in the classroom.
- b. Qualified faculty members.
- c. Regular guest lectures and educational visits.
- d. Culture of timeliness, commitment, and uninterrupted curriculum.
- e. Flexibility in choosing competent faculties through outsourcing.
- f. Well-thought-out and continuous feedback and assessment system.
- g. Effective teaching through the innovative method.
- h. Industrial attachment for on job training.
- i. Emphasis on code of conduct and dress code.
- j. Focus to develop students as good humans with all possible attributes of a successful leader.
- k. Tranquil, pollution-free and secure campus life.

1.4 Location

MIST is located at Mirpur Cantonment, northwest edge of the greater Dhaka city, a hub of knowledge for the armed forces. Mirpur Cantonment is a small, calm, and quiet education village and free from all possible pollution of city life. A garland like a lake with migratory birds, three sides with extended green fields in the summer and water bodies in the rainy season, whistling birds on the tree branches, and overall bounty of nature adds to the already existing splendid academic atmosphere. Other neighboring academic institutions are National Defense College (NDC) and Defense Services Command and Staff College (DSCSC) – two international standard education centers.

1.5 <u>Faculties</u>

- 1.5.1 Faculty of Civil Engineering (FCE):
 - Civil Engineering (CE)
 - Architecture (Arch)
 - Environmental, Water Resouce and Coastal Engineering (EWCE)
 - Petroleum and Mining Engineering (PME)
- 1.5.2 Faculty of Electrical and Computer Engineering (FECE):
 - Computer Science and Engineering (CSE)
 - Electrical, Electronic and Communication Engineering (EECE)
- 1.5.3 Faculty of Mechanical Engineering (FME):
 - Mechanical Engineering (ME)
 - Aeronautical Engineering (AE)
 - Naval Architecture and Marine Engineering (NAME)
 - Industrial and Production Engineering (IPE)
- 1.5.4 Faculty of Science and Engineering (FSE):
 - Biomedical Engineering (BME)
 - Nuclear Science and Engineering (NSE)
 - Department of Science (Mathematics, Physics, Chemistry) and Humanities

Presently MIST has 12 (twelve) departments to conduct B Sc. Engineering program under 04 (four) different engineering faculties. The departments impart education basing on common objectives and outcomes set by MIST and have defined program objectives and outcomes, specific to the departments respectively

1.6 <u>Eligibility of Students for Admission in MIST (Subject to review each year)</u>

The students must fulfill the following requirements:

a. <u>Bangladeshi Students.</u> Minimum qualifications to take part in the admission test are as follows:

(1) The applicant must have passed SSC / equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science Group obtaining GPA 4.00 (without a fourth subject) on a 5 points scale and in HSC/Equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science group the applicant must have obtained minimum GPA 4.00 on a 5 points scale. In HSC/Equivalent and SSC/Equivalent examination: (i) the applicant passed HSC or Equivalent in must obtain a

minimum total grade point 17 in four subjects (Mathematics, Physics, Chemistry, and English), (ii) SSC Examination (or Equivalent).

(2) The applicant must have qualified in minimum five subjects including Mathematics, Physics, Chemistry and English Language with minimum 'B' in average [i.e., A=5, B=4, C=3, D=2 & E=1, minimum required grade point=20] in GCE 'O' Level and in 'A' level/Equivalent background of Minimum 'B' grade in Mathematics, Physics and Chemistry.

- (3) Applicants who have passed HSC or equivalent examination in the current previous year must grade obtain 19 in four subjects (Mathematics, Physics, Chemistry, and English).
- (4) Sex: Male and Female.
- b. <u>Foreign Students.</u> Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:
 - (1) Educational qualifications as applicable for Bangladeshi students or equivalent.
 - (2) Must have security clearance from respective Embassy/High Commission in Bangladesh.
 - (3) Sex: Male and Female.

In the event of non-availability of foreign students, Bangladeshi civil candidates will fill up the vacancies.

1.7 <u>Number of Seats (Subject to review each year)</u>

The highest number of seats for 04 (Four) years Bachelor Degree in Engineering programmes (Unit – A) and 5 (Five) years Bachelor Degree of Architecture programme are as follows:

Allocation of Seats

Ser	Unit	Department	Seats
1.		Civil Engineering (CE)	120
2.		Computer Science and Engineering (CSE)	120
3.	Α	Electrical, Electronic & Communication Engineering (EECE)	120
4.		Mechanical Engineering (ME)	120
5.		Aeronautical Engineering (AE)	50

Ser	Unit	Department	Seats
6.		Naval Architecture and Marine Engineering (NAME)	40
7.		Biomedical Engineering (BME)	40
8.		Nuclear Science and Engineering (NSE)	40
9.		Environmental, Water Resource, and Coastal Engineering (EWCE)	60
10.		Industrial and Production Engineering (IPE)	50
11.		Petroleum and Mining Engineering (PME)	25
12.	B	Architecture (Arch)	25
	Total		810

1.8 Admission Procedure (Subject to review each year)

1.8.1 <u>Syllabus for Admission Test</u>. Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (comprehension and functional) subjects of HSC examinations of all boards of secondary and higher secondary school certificates. There will be no multiple-choice type questions (MCQ). Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
1.	Mathematics	90
2.	Physics	70
3.	Chemistry	30
4.	English	10
		Total = 200

1.8.2 <u>Final Selection</u>. Students will be selected based on the results of the admission test. The individual choice for selection of departments will be given preference as far as possible. The minimum qualifying marks in the test is 40% for the applicants. In the case of a tie in the result of the admission test, the difference will be judged based on marks obtained in Mathematics, Physics, Chemistry, and English respectively in the admission test.

1.8.3 <u>Medical Checkup.</u> Civil candidates selected through the admission test will go for medical checkups in MIST medical center. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in the medical policy of MIST will be declared unsuitable for admission.

1.9 <u>Students Withdrawal Policy</u>

1.9.1 General Policy of Withdrawal

The undergraduate (B.Sc.) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms and for Architecture programme it is planned for 05 regular levels, comprising of 10 regular terms. It is expected that all students will earn a degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

- a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing in referred examination as per examination policy. In the case of students completing level-4, a maximum of three courses/subjects will be allowed in the referred examination (which is to be cleared within 6 years of registration).
- b. The referred examination will be conducted at this institution before the commencement of the next level.
- c. Maximum grading for supplementary/self-study examination etc. of failed subjects will be B+ as per examination policy.
- d. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of the Academic Council of MIST, a student may be allowed for the third time as the last chance.
- e. In case of sickness, which leads to missing more than 40% of classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- f. The minimum credit for the award of a bachelor's degree in Engineering (BSc Engg) and Architecture (B Arch) will be decided by the respective department as per existing rules. However, the minimum CGPA requirement for obtaining a bachelor's degree in engineering and Architecture is 2.20.
- g. Whatever may be the cases, students have to complete the whole undergraduate Program within 06 (six) academic years from the date of registration.

h. All other terms and conditions of the MIST Examination Policy remain valid.

1.9.2 Withdrawal on Disciplinary Ground

a. <u>Unfair Means</u>. Adoption of unfair means may result in expulsion of a student from the programme and expulsion so from the Institution. The Academic Council will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:

- i. Communicating with fellow students for obtaining help in the examination.
- ii. Copying from another student's script/ report /paper.
- iii. Copying from desk or palm of a hand or from other incrimination documents.
- iv. Possession of any incriminating document whether used or not.

b. **Influencing Grades.** Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.

c. <u>Other Indiscipline Behaviours.</u> Academic Council may withdraw/expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/programme or is considered detrimental to MIST's image.

d. <u>Immediate Action by the Disciplinary Committee of MIST</u>. The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the Institution. In case of withdrawal/expulsion, the matter will be referred to the Academic Council, MIST for post-facto approval.

1.9.3 <u>Withdrawal on Own Accord</u>

a. **<u>Permanent Withdrawal.</u>** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.

b. <u>**Temporary Withdrawal.**</u> A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, he will be allowed to apply fresh in future batch. If approved from the date of his/her registration.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME AT MIST

2.1 <u>Introduction</u>

MIST has introduced a course system for undergraduate studies from the academic session 2017-18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering the undergraduate curriculum through the Course System. This will be introduced with an aim of creating a continuous, even, and consistent workload throughout the term for the students.

2.2 <u>The Course System</u>

The salient features of the Course System are as follows:

- a. Number of theory courses will be generally 5 in each term. However, with the recommendation of the course coordinator and Head of the Department, Commandant MIST may allow relaxation in this regard. This relaxation is to be reported to the Academic Council of MIST.
- b. Students will not face any level repeat for failing.
- c. Students will get the scope to improve their grading.
- d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.
- e. Continuous evaluation of students' performance.
- f. Promotion of student-teacher interaction and contact.

2.2.1 Besides the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics, and chemistry. Due importance is also given to the study of several subjects in humanities and social sciences.

2.2.2 The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science, and humanities subjects; while the third and subsequent years focus on specific disciplines.

2.3 <u>Number of Terms in a Year</u>

There will be two terms (Spring Term I and Fall Term II) in an academic year.

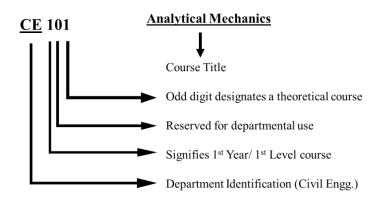
2.4 **Duration of Terms**

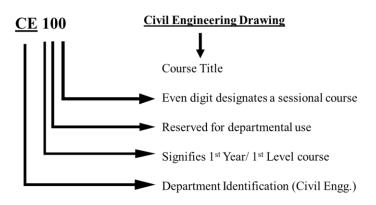
The duration of each of Term I (Spring) and Term II (Fall) (maximum 22 weeks) may be as under:

Ser	Events	Durations
1.	Classes before Mid Term	7 weeks
2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2~3 weeks
5.	Term Final Examination	2~3 weeks
6.	Term End Vacation	1~2 week

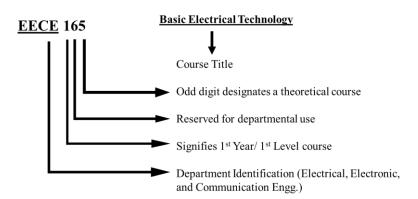
2.5 <u>Course Pattern and Credit Structure</u>

The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science, and humanities subjects; while the third and subsequent years focus on specific disciplines.


2.6 <u>Course Designation System</u>


Each course is designated by a maximum of four-letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

- a. The left-most digit corresponds to the year/level in which the course is normally taken by the students. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.
- b. The right-most digit is an odd number for theoretical courses and an even number for sessional courses.


The course designation system is illustrated as Follows:

CE Dept. Courses

Interdisciplinary Course

Basic Science Course

2.7 Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

- a. Theoretical Courses: One lecture per week per term is equivalent to one credit.
- b. Sessional Courses: Credits for sessional courses is half of the class hours per week per term.

Credits are also assigned to project and thesis work taken by the students. The number of credits assigned to such work varies from one discipline to another.

2.8 <u>Types of Courses</u>

The types of courses included in the undergraduate curricula are divided into the following groups:

- a. <u>Core Courses</u>. In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete the entire designated core courses of his/her discipline.
- b. <u>Prerequisite Courses</u>. Some of the core courses are identified as prerequisite courses for a specific subject.
- c. **Optional Courses.** Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

2.9 <u>Course Offering and Instruction</u>

The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.

2.9.1 Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

2.10 <u>Teacher Student Interaction</u>

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

2.11 <u>Students' Adviser</u>

One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.

2.11.1 However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor the subsequent progress of the student.

2.11.2 For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

2.12 <u>Course Registration</u>

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

2.13 <u>Registration Procedure</u>

At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is essential that all the students be present for registration at the specified time.

2.14 <u>Pre-conditions for Registration</u>

- a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.
- b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.

c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre-requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre-requisite course is found to be satisfactory.

2.15 <u>Registration Deadline</u>

Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.

2.16 Penalty for Late Registration

Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

2.17 Limits on the Credit Hours to be Taken

2.17.1 A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.

2.17.2 In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Only graduating students may be allowed to register less than 15 Cr Hr without the approval of the Commandant. A list of all such cases to be forwarded to Register Office, ICT dept, and Controller of Exam Office by the respective Department.

2.18 Course Add/Drop

2.18.1 A student has some limited options to add or drop courses from the registration list. The addition of courses is allowed only within the first two weeks of a regular. Dropping a course is permitted within the first four weeks of a regular term. Add or drop is not allowed after registration of courses for Supplementary-I and Supplementary-II Examination.

2.18.2 Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.

2.18.3 All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

2.19 <u>Withdrawal from a Term</u>

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However, the application may be considered during the term final examination in a special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

2.20 The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment, and a term final examination. The assessments for sessional courses are made by evaluating the performance of the student at work during the class, viva-voce during laboratory hours, and quizzes. Besides that, in the end, there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightage. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to 79%	А	3.75
70% to 74%	A-	3.50
65% to 69%	B+	3.25
60% to 64%	В	3.00

Numerical Markings	Grade	Grade Points	
55% to 59%	B-	2.75	
50% to 54%	C+	2.50	
45% to 49%	С	2.25	
40% to 44%	D	2.00	
below 40%	F*	0.00	
	AB	Absent	
	DC	Dis-collegiate	
	VW	Voluntary withdrawn	
	Х	Project/ Thesis Continuatiom	
	Е	Expelled	
	S	Satisfactory	

*Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

2.21 Marks Distrubtion

2.21.1 <u>Theory</u>. Forty percent (40%) marks of a theoretical course shall be allotted for continuous assessment, i.e. quizzes, home assignments, class tests, observations/ class participation, and class attendance. These marks must be submitted to the Office of the Controller of Examinations before the commencement of the final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of the final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes.

Distribution of marks for a given course per credit is as follows:

Sl.	Components	Grading
1	Class Performance	5%
2	Class Attendance	5%
3	Class Test / Assignment	20%
4	Mid Term Assessment (Exam / Project)	10%
5	Final Examination (Section A & B)	60%
	Total	100%

Note: Distribution of marks may change based on the decision of Academic Council of MIST.

2.21.2 <u>Sessional/Practical Examinations</u>

Sessional courses are designed and conducted by the concerned departments. Examination on sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department. Students will be evaluated in the sessional courses on the basis of the followings (all or as decided by the Examination Sub-Committee):

SL.	0	Grading	
1		Class Performance	5%
	Continuous	Conduct of Lab Test	20%
	Assessment (60%)	Report Writing/Programming	15%
		Mid-term Evaluation (Exam/Project/Assignment)	20%
2	Final Evaluation	Final Exam (Exam/Project/Assignment)	30%
	(40%)	Viva Voce/ Presentation	10%
	Total Marks		100%

Note: The above distribution of percentage is a general guideline. Department can rearrange to some extent if required

2.21.3 <u>Sessional Course in English</u>. The distribution will be as under:

Sl.	Components	Grading
1	Class Performance	5%
2	Class Observation	5%
3	Written Assignment	15%
4	Oral Performance	25%
5	Listening Skill	10%
6	Group Performance	30%
7	Viva Voce	10%
	Total	100%

2.21.4 Class Attendance.

Class attendance may be considered as a part of continuous assessment.

2.21.5 Collegiate and Non-collegiate

Students having class attendance of 85% or above in individual subject will be treated as collegiate and less than 85% and up to 70% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear in the examination subject upon payment of non-collegiate fee/fine of an amount fixed by MIST/BUP. Students having class attendance below 70% will be treated as dis-collegiate and will not be allowed to appear in the examination and treated as fail. But in a special case such students may be allowed to appear in the examination with the permission of Commandant and it must be approved by the Academic Council.

2.22 Calculation of GPA

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C_1, C_2, \ldots, C_n and his grade points in these courses are G_1, G_2, \ldots, G_n respectively then

$$GPA = \frac{\sum_{i=1}^{n} CiGi}{\sum_{i=1}^{n} Ci}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC_1 , TC_2 , ..., TC_n and his GPA in these terms are GPA₁, GPA₂, GPA_n respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TCiGPAi}{\sum_{i=1}^{n} TCi}$$

Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credits, C _i	Grade	Grade, G _i	Points, C _I *G _i
CE 100	1.50	А	3.75	5.625
CE 101	3.00	A+	4.0	12.00
PHY 101	3.00	A-	3.50	10.50
CHEM 101	3.00	A+	4.00	12.00

Course	Credits, C _i	Grade	Grade, G _i	Points, C _I *G _i
MATH 101	3.00	В	3.00	9.00
GEBS 101	2.00	В-	2.75	5.50
CSE 176	1.50	В	3.00	4.50
ME 132	1.50	A+	4.00	6.00
CHEM 102	1.50	А	3.75	5.625
Total	20			70.75

GPA = 70.75/20.00 = 3.5375

Suppose a student has completed four terms and obtained the following GPA.

Level	Term	Credit Earned, TC _I	Hours GPA Earned, GPA _i	GPA _i *TC _i
1	1	20.00	3.73	74.60
1	2	20.00	3.93	78.60
2	1	20.00	3.96	79.20
2	2	20.00	4.00	80.00
Total		80.00		312.40

CGPA = 312.40/80 = 3.905

2.23 Minimum Earned Credit and GPA Requirement for Obtaining Degree

Minimum credit hour requirements for the award of Bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided as per existing rules. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and other discipline is 2.20.

2.24 <u>Minimum Earned Credit and GPA Requirement for Obtaining Degree</u> (Additional Course)

Minimum credit hour requirements for the award of Bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided by the respective department (BUGS). However, at least 157 credit hours for engineering must be earned to be eligible for graduation. This must include the specified core courses. The minimum GPA requirement for obtaining a Bachelor's degree in Engineering and Architecture is 2.20. A student may take additional courses with the consent of his Advisor in order to raise GPA, but he/she may take a maximum of 15 such additional credits beyond respective credit-hours requirements for Bachelor's degree during entire period of study.

2.25 Impacts of Grade Earned

The courses in which a student has earned a 'D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an 'F' grade will not be counted towards his/her earned credits or GPA calculation. However, the 'F' grade will remain permanently on the Grade Sheet and the Transcript.

2.25.1 A student who obtains an 'F' grade in a core course will have to repeat that particular course. However, if a student gets an 'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an 'F', he/she will not be eligible to get a grade better than 'B+' in that repeated course.

2.25.2 If a student obtains a grade lower than 'B+' in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+' for an improvement course.

2.25.3 A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in the B. Arch. program.

2.25.4 If a student obtains a 'B+' or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

2.26 <u>Classification of Students</u>

At MIST, regular students are classified according to the number of credit hours completed/ earned towards a degree. The following classification applies to all the students:

Level	Credit Hours Earned		
	Engineering	Architecture	
Level 1	0.0 to 36.0	0.0 to 34.0	
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0	
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0	
Level 4	More than 108.0	More than 110.0 to 147.0	
Level 5		More than 147.0	

2.26.1 However, before the commencement of each term all students other than new batch are classified into three categories:

- a. **Category 1:** This category consists of students who have passed all thecourses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.
- b. **Category 2:** This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.
- c. **Category 3:** This category consists of students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

2.27 <u>Definition of Graduating Student</u>.

Graduating students are those students who will have ≤ 24 credit hours for completing the degree requirement.

2.28 <u>Performance Evaluation</u>

The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.

2.28.1 Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists:

- a. The term GPA falls below 2.20.
- b. The Cumulative Grade Point Average (CGPA) falls below 2.20.
- c. The earned number of credits falls below 15 times the number of terms attended.

2.28.2 All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and backlog courses, if there are any,

with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

2.29 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for the Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

2.30 <u>Time Limits for Completion of Bachelor's Degree</u>

A student must complete his studies within a maximum period of six years for engineering and seven years for architecture.

2.31 Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

2.31.1 <u>Attendance</u>. All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules.

2.31.2 <u>Conduct and Discipline</u>. During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

2.32 <u>Teacher-Student Interaction</u>

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

2.33 Absence during a Term

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

2.34 <u>Recognition of Performance</u>

As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends will be given as per existing rules and practices.

2.35 <u>Types of Different Examinations (Subject to change for different academic session)</u>

Following different types of final Examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

a. <u>**Term Final Examination:**</u> At the end of each normal term (after 22 wk or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.

b. <u>Supplementary Examination</u>: It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.

c. **Improvement Examination:** It will be taken during Supplementary-I and Supplementary-II Examination. Questions will be same as the question of the regular examination of that Supplementary Examination (if any). Student can take maximum two subjects at a time (two subjects in supplementary-I and one subject in supplementary-II) and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better then 'B+' for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i.e., previous to improvement examination, shall be reflected in thetranscript.

2.36 <u>Rules of Different Examinations (Subject to change for different academic session)</u>

2.36.1 <u>Term Final Examination</u>. Following rules to be followed:

- a. Registration to be completed before commencement of the class. A student has to register his desired courses paying registration, examination fee and other related fees.
- b. Late registration will be allowed without penalty within first one week of the term.
- c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.
- d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.
- e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

2.36.2 <u>Supplementary Examination</u>. Following rules to be followed:

- a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively.
- b. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.
- c. No class will be conducted.
- d. Forty percent (40%) marks will be considered from the previous exams.
- e. Maximum grading in Supplementary Exam will be 'B+'.
- f. No Sessional Exam will be conducted.
- g. Examination will be taken on 60% marks like Term Final Examination.

- h. If a student fails in a course more than once in regular terms, then for calculating 40% marks best one of all continuous assessment marks will be counted.19
- i. If anyone fails in the laboratory/sessional course, that course cannot be taken in the supplementary examination.
- j. If any student fails in a course, he can clear the course retaking it 2nd time or, he can clear the examination appearing at the supplementary examination as any one fails twice in a course, can only retake it in the regular term for appearing third time. But anyone fails even after appearing third time. He/she has to take of Academic Council of MIST for appearing 4th (last) time in a course and need to pay extra financial penalty. If any student fails even 4th time in a course, will not be allowed to appear anymore in this same course.
- k. Registration of Supplementary-I Exam to be done within 5th wk after completion of Fall Term (July to Dec) and registration of Supplementary-II exam to be done during the Mid-Term break of Spring Term (Jan to Jun), paying all the required fees.
- 1. There will be no provision for add/drop courses after registration.
- m. Question Setting, Moderation, and Result Publication to be done following the same rules of Spring (Jan to Jun) / Fall (July to Dec) Term Final Exam as per existing Examination Policy.
- n. Moderation of the questions for Supplementary-I will be done in the 5th week after completion of Fall Term (July to Dec) Final Exam and Supplementary II with the moderation of the questions of Spring Term (Jan to Jun).
- o. Separate Tabulation sheet to be made.
- p. Thesis: if a student cannot complete thesis in two consecutive terms, with the recommendation of the supervisor, he/she may continue for next one/two term within six academic years.

2.36.3 Improvement Examination.

The following rules are to be followed:

- a. Improvement exam should be taken during the supplementary-I and supplementary-II examinations.
- b. For Improvement examination, registration is to be done during the registration of supplementary-I and supplementary-II examinations by paying all the fees.
- c. Question Setting, Moderation, and Result Publication to be done with courses of supplementary-I and supplementary-II examinations.

- d. Any students get a grading below 'B+' and desires to improve that course, he will be allowed to appear the improvement examination for that particular course.
- e. Highest garde of improvement examination will be 'B+'
- f. One student is allowed to appear at Improvement exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time (two courses at supplementary-I and one course at supplementary-II).

2.37 Irregular Graduation

If any graduating student clears his/her failed course in Term-1 and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Term-1 and that student will be allowed to apply for provisional certificate.

CHAPTER 3

DEPARTMENT OF CIVIL ENGINEERING

3.1 Introduction to the Program

The CE Department of MIST, standing on the fourmoral attributes: fundamentals, innovation, excellence, and advancements, holds its glory of being the pioneer department of MIST. By creating a positive learning environment and sharing the most up-to-date technical knowledge and skills, the department of CE produces next-generation top-notch engineers and leaders for the nation. Since its commencement in 1999 with only 40 military students, this department has emerged to house and train engineering students at the undergraduate level at the current time. It is the first-ever department of MIST to receive accreditation from the Board of Accreditation for Engineering and Technical Education (BAETE) in 2008. In 2018, the department received the highest grade from BAETE during the re-accreditation process. Again in 2019 and 2023, the department received accredation under Outcome Based Education (OBE) following the guideline of BAETE and Washington Accord. This department has again pioneered the Post Graduate program by introducing the M.Sc. / M. Engg. and Ph.D. in 2012 and 2013 respectively. This department is enriched with highly experienced and disciplined teaching staff having a wide vision. At present, 36 faculties are serving in this department of whom 8 are Ph.D. qualified from home and abroad. This department highly promotes interactive learning and a collective class-environment which helps the students become more engrossed in employing themselves with the subject-matter and develop their depth of knowledge in engineering education. Besides, the programs emphasizing engineering science and design provides students with ample opportunity to put their knowledge into practice by solving real-world problems under the guidance of our readily approachable faculty members. This department also contributes to the country's infrastructural development. All-in-all, within a very short span of time, the CE department of MIST has spread its outreach throughout the nation and is playing a vital role in building an ingenious society enriched with engineering transcendence and revolution.

The proposed B. Sc. in Civil Engineering (CE) program comprises a total of 160 credits (201 contact hours) and 03 weeks of practical surveying and 03 weeks of internship. A student of this program can specialize in five (05) different disciplines, such as structural engineering, geotechnical engineering, water resource engineering, transportation engineering, and environmental engineering.

3.2 Vision and Mission of the Program

Vision:

To become a recognized leader in producing highly competent civil engineers by imparting quality education, promoting useful research and striving to induce social responsibilities, ethical values and leadership to enhance quality of life for people of the nation and the world.

Mission:

MD 1 To provide a high-quality learning environment for students in both undergraduate and postgraduate levels through a broad-based, rigorous curriculum, emphasizing theoretical and practical concepts to gain fundamental and specialized engineering knowledge, while they develop skills in critical thinking, communication, leadership, and lifelong learning.

MD 2 To create opportunities for students and faculty to conduct basic and applied research that contributes to society by advancing sustainable engineering principles and practices.

MD 3 To provide civil engineering leadership and service to the nation, the profession, and society at large with strong professional values, and disciplined work ethics.

3.3 **Program Educational Objectives (PEOs)**

No	PEO Statement
PEO-1	Graduates of Civil Engineering will develop a sound background in fundamental science and engineering principles as applied to civil engineering for a successful professional career.
PEO-2	Graduates of Civil Engineering acquire skills and abilities to excel in the area of civil engineering both in industries and academics.
PEO-3	Graduates of Civil Engineering will understand sustainable engineering practices, Socio-ethical values, and life-long learning.
PEO-4	Graduates of Civil Engineering possess awareness towards higher education, research & development and play a role to the leadership.

3.4 <u>Program Outcomes (POs)</u>

Program Outcomes (POs) represent the knowledge, skills, and attitudes the students should have at the end of a four-year engineering program. Based on the suggestion of the Board of Accreditation for Engineering and Technical Education (BAETE), Bangladesh, the Civil Engineering (CE) program has the following 12 Program Outcomes:

PO1 Engineering knowledge: Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialization (**WK1**, **WK2**, **WK3**, **WK4**) to the solution of complex Civil engineering problems.

PO2 Problem analysis: Able to identify, formulate, research literature and analyze complex Civil engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (**WK1**, **WK2**, **WK3**, **WK4**).

PO3 Design/development of solutions: Able to design solutions for complex Civil engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental concerns (WK5).

PO4 Investigation: Able to conduct investigations of complex Civil Engineering problems using research-based knowledge (**WK8**) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

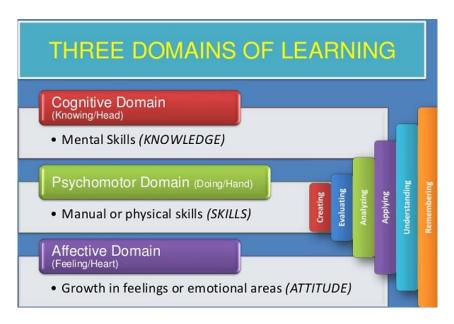
PO5 Modern tool usage: Able to create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex Civil engineering problems, with an understanding of their limitations (**WK6**).

PO6 The engineer and society: Able to apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex Civil engineering problems (**WK7**).

PO7 Environment and sustainability: Able to understand and evaluate the sustainability and impact of professional engineering work in the solution of complex Civil engineering problems in societal and environmental contexts (**WK7**).

PO8 Ethics: Able to apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice (**WK7**).

PO9 Individual work and teamwork: Able to function effectively as an individual, and as a member or leader of diverse teams and in multi-disciplinary settings.


PO10 Communication: Able to communicate effectively about complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports, design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Able to demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's work as a member or leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Able to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

3.5 <u>Bloom's Taxonomy</u>

Bloom's Taxonomy is a classification system used to define and distinguish different levels of human cognition i.e., thinking, learning, and understanding. Typically, Bloom's Taxonomy is used to inform or guide the development of Assessments (tests and other evaluations of student learning), Curriculum (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies. There are three learning domains of Bloom's Taxonomy.

Figure 3.1: The Learning Domains of Bloom's Taxonomy (OBE Based Curriculam UGC 2020)

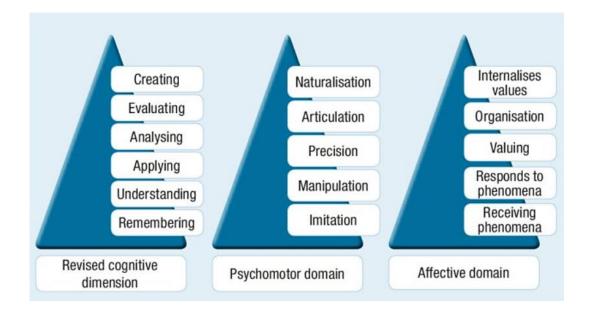



Figure 3.2: Three Domains of Bloom's Taxonomy (OBE Based Curriculam UGC 2020)

Figure 3.3: Levels of three Domains of Bloom's Taxonomy (OBE Based Curriculam UGC 2020)

3.6 <u>Washington Accord</u>

The graduate attributes adopted by the Washington Accord signatories are generic to the education of professional engineers in all engineering disciplines. They categorise what graduates should know, the skills they should demonstrate and the attitudes they should possess. The Washington Accord Graduate Attribute Profile has 12 elements, supported by a Knowledge Profile, WK1-WK8, and a definition of the Level of Problem Solving, WP1-WP7, which given below:

3.6.1 Knowledge Profiles (WK1 to WK8)

The Washington Accord Knowledge Profile has eight elements:

WK1: A systematic, theory-based understanding of the **natural sciences** applicable to the discipline.

WK2: Conceptually-based **mathematics**, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modeling applicable to the discipline.

WK3: A systematic, theory-based formulation of **engineering fundamentals** required in the engineering discipline.

WK4: Engineering **specialist knowledge** that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

WK5: Knowledge that supports engineering design in a practice area.

WK6: Knowledge of **engineering practice** (technology) in the practice areas in the engineering discipline.

WK7: Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental and sustainability.

WK8: Engagement with selected knowledge in the **research literature** of the discipline.

3.6.2 <u>Range of Problem Solving</u>

Complex Engineering Problems have characteristic WP1 and some or all of WP2 to WP7:

WP1 Depth of knowledge required: Cannot be resolved without in-depth engineering knowledge at the level of one or more of WK3, WK4, WK5, WK6 or WK8 which allows a fundamentals-based, first principles analytical approach.

WP2 Range of conflicting requirements: Involve wide-ranging or conflicting technical, engineering and other issues.

WP3 Depth of analysis required: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models.

WP4 Familiarity of issues: Involve infrequently encountered issues.

WP5 Extent of applicable codes: Are outside problems encompassed by standards and codes of practice for professional engineering.

WP6 Extent of stakeholder involvement and conflicting requirements: Involve diverse groups of stakeholders with widely varying needs.

WP7 Interdependence: Are high level problems including many component parts or sub-problems.

3.6.3 <u>Range of Engineering Activities</u>

Complex activities mean activities or projects that have some or all of the following characteristics:

EA1 Range of resources: Involve the use of diverse resources (and for this purpose resources includes people, money, equipment, materials, information and technologies)

EA2 Level of interactions: Require resolution of significant problems arising from interactions between wide ranging or conflicting technical, engineering or other issues

EA3 Innovation: Involve creative use of engineering principles and research-based knowledge in novel ways

EA4 Consequences to society and the environment: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation

EA5 Familiarity: Can extend beyond previous experiences by applying principlesbased approaches.

3.7 <u>Relationship/Mapping between Mission of the Dept and the Institute</u>

		Mission of MIST				
No.	Mission statement of	Mission	Mission	Mission	Mission	
1101	CE	statement	statement	statement	statement	
		1	2	3	4	
1	Provide a high-quality	Yes	Yes	No	No	
	learning environment for					
	students in both					
	undergraduate and					
	postgraduate levels					
	through a broad-based,					
	rigorous curriculum,					
	emphasizing theoretical					
	and practical concepts to					
	gain fundamental and					
	specialized engineering					
	knowledge, while they					
	develop skills in critical					
	thinking, communication,					
	leadership and lifelong					
	learning.	N.	V	V	V	
2	Create opportunities for	No	Yes	Yes	Yes	
	students and faculty to					
	conduct basic and applied					
	research that contributes					
	to society by advancing					
	sustainable engineering					
	principles and practices.					

		Mission of MIST					
No.	Mission statement of	Mission	Mission	Mission	Mission		
1,00	CE	statement	statement	statement	statement		
		1	2	3	4		
3	Provide civil engineering	No	Yes	Yes	No		
	leadership and service to						
	the nation, the profession						
	and society at large with						
	strong professional						
	values, and disciplined						
	work ethics.						

3.8 <u>Relationship/Mapping between PEO and Mission of the Dept</u>

		Mis	sion of CE I	Dept
No.	Program Educational Objectives (PEOs)	Mission statement 1	Mission statement 2	Mission statement 3
1	Graduates of CE will develop a sound background in fundamental science and engineering principles as applied to civil engineering for a successful professional career.	Yes	No	Yes
2	Graduates of CE acquire skills and abilities to excel in the area of civil engineering both in industries and academics.	Yes	Yes	No
3	Graduates of CE will understand sustainable engineering practices, Socio-ethical values and life- long learning.	No	Yes	Yes
4	Graduates of CE possess awareness towards higher education, research & development and play a role to the leadership	Yes	Yes	No

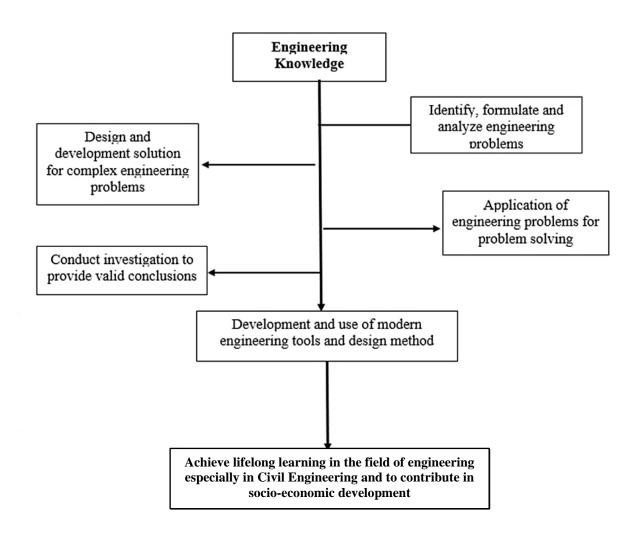
3.9 <u>Relation between PEOs and POs</u>

No.	PO statement	PEO 1	PEO 2	PEO 3	PEO 4
1	Engineering knowledge: Apply the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization (WK1, WK2, WK3, WK4) to the solution of complex Civil engineering problems	Yes	No	No	No
2	Problem analysis: Able to identify, formulate, research literature and analyze complex Civil engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (WK1, WK2, WK3, WK4)	Yes	No	No	Yes
3	Design/development of solutions: Able to design solutions for complex Civil engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental concerns (WK5).	Yes	No	No	No
4	Investigation: Able to conduct investigations of complex Civil Engineering problems using research-based knowledge (WK8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions	Yes	No	No	No
5	Modern tool usage: Able to create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex Civil engineering problems, with an understanding of their limitations (WK6)	Yes	Yes	No	No
6	The engineer and society: Able to apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex Civil engineering problems (WK7)	No	No	Yes	No
7	Environment and sustainability: Able to understand and evaluate the sustainability and	No	No	Yes	No

No.	PO statement	PEO 1	PEO 2	PEO 3	PEO 4
	impact of professional engineering work in the solution of complex Civil engineering problems in societal and environmental contexts (WK7)				-
8	Ethics: Able to apply ethical principles and commit to the professional ethics, responsibilities and the norms of the engineering practice (WK7)	No	No	Yes	No
9	Individual work and teamwork: Able to function effectively as an individual, and as a member or leader of diverse teams and in multi-disciplinary settings	No	No	No	Yes
10	Communication: Able to communicate effectively about complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports, design documentation, make effective presentations, and give and receive clear instructions	No	Yes	No	Yes
11	Project management and finance: Able to demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's work as a member or leader in a team, to manage projects and in multidisciplinary environments	No	No	Yes	No
12	Life-long learning: Able to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	No	No	Yes	Yes

3.10 <u>Course Outcomes (COs):</u>

The Course Outcomes (CO) are the resultant knowledge skills the student acquires at the end of a course. It defines the cognitive processes a course provides. Chapter 5 and 6 contain the detailed Learning Outcomes for each of the courses under the heading of Learning Outcomes (LOs).


3.11 Generic Skills

The graduates of the NE program are expected to have the following generic skills:

- a. Ability to apply the principles and theory of nuclear engineering knowledge to the requirements, design and development of different nuclear systems with appropriate understanding.
- b. Ability to define and use appropriate research methods and modern engineering tools.
- c. Ability to apply critical thinking to solve complex engineering problems and design innovative solutions.
- d. Ability to learn independently, be self- aware and self- manage their time and workload.
- e. Ability to analyze real time problems and justify the appropriate use of technology.
- f. Ability to work effectively as an individual, and as a member or leader of a team in diverse situations and exhibit social responsibility.

3.12 <u>Curriculum/ Skill Mapping</u>

The courses of CE program are designed in such a way that the corresponding Course Outcomes (COs) contribute to the 12 Program Outcomes (POs) which eventually achieves the mission and vision of the program. Chapter 5 and 6 contain the mapping for each of the courses. However, generic curriculum/ skill mapping is shown below:

CHAPTER 4

COURSE CURRICULUM FOR BACHELOR DEGREE IN CE

4.1 <u>Introduction</u>

Keeping the above-mentioned program outcome, the following courses are offered for the undergraduate students of Civil Engineering (CE) Program offered by the Department of Civil Engineering.

4.2 <u>List of Language, General Education, Mathematics, Basic Science, and</u> <u>Interdisciplinary Courses</u>

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	PHY 101	Waves and Oscillation, Optics, and Modern Physics	1-I	3	3
2	CHEM 101	Fundamentals of Chemistry	1-I	3	3
3	PHY 107	Structure of Matter, Heat and Temperature, Kinetics and Kinematics	1-II	3	3
4	CHEM 105	Environmental Chemistry	1-II	3	3
5	PHY 102	Physics Sessional	1-II	1.5	3
6	CHEM 102	Chemistry Sessional	1-I	1.5	3

Basic Science

Mathematics

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	MATH 101	Diffrential and Integral Calculus	1-I	3	3
2	MATH 103	Differential Equations and Matrix	1-II	3	3
3	MATH 201	Vector Analysis, Laplace Transform and Coordinate Geometry	2-I	3	3
4	MATH 203	Applied Mathematics for Engineers	2-II	3	3

General Education

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	GEBS 101	Bangladesh Studies	1-I	2	2
2	GES 101	Fundamentals of Sociology	1-I	2	2
3	GELM 175	Leadership and Management	1-II	2	2
4	GEA 201	Principles of Accounting	2-I	2	2
5	GEE 201	Fundamentals of Economics	2-I	2	2
6	GEEP 203	Engineering Ethics and Professional Practices	2-II	2	2
7	GERM 352	Fundamentals of Research Methodology	3-I	1	1
8	GESP 303	Sustainability of Development Projects	3-I	2	2
9	GEPM 401	Project Planing and Construction Management	4-II	3	3

Language

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	LANG 101	Language and Literature (বাংলা ভাষা ও সাহিত্য)	1-II	2.0	2.0
2	LANG 102	Communicative English I	1-II	1.5	3
3	LANG 202	Communicative English II	2-I	1.5	3

Interdisciplinary

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CSE 176	Computer Programming Sessional	1-I	1.5	3
2	ME 132	Workshop Technology Sessional	1-I	1.5	3
3	EECE 165	Basic Electrical Technology	1-II	3	3
4	CSE 274	Engineering Computations Sessional	2-II	1.5	3

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
5	ARCH 214	Architechtural, Engineering and Planning Appreciation	2-II	1.5	3

4.3 <u>List of Core Courses</u>

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 100	Civil Engineering Drawing	1-I	1.5	3
2	CE 101	Analytical Mechanics	1-I	3	3
3	CE 103	Surveying and Spatial Information Engineering	1-II	3	3
4	CE 102	Computer Aided Drawing	1-II	1.5	3
5	CE 104	Practical Surveying	1-II	1.5	3 weeks
6	CE 211	Mechanics of Solids I	2-I	3	3
7	CE 261	Fluid Mechanics	2-I	3	3
8	CE 203	Engineering Geology and Geomorphology	2-I	3	3
9	CE 200	Details of Construction	2-I	1.5	3
10	CE 210	GIS and Remote sensing	2-I	1.5	3
11	CE 262	Fluid Mechanics Sessional	2-I	1.5	3
12	CE 201	Engineering Materials	2-II	3	3
13	CE 205	Numerical Methods and Data Analysis	2-II	3	3
14	CE 213	Mechanics of Solids II	2-II	3	3
15	CE 208	Quantity Surveying	2-II	1.5	3
16	CE 212	Structural Mechanics and Materials Sessional	2-II	1.5	3
17	CE 311	Structural Analysis and Design I	3-I	4	4
18	CE 315	Design of Concrete Structures I	3-I	3	3

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
19	CE 331	Water Supply Engineering	3-I	3	3
20	CE 341	Principle of Soil Mechanics	3-I	4	4
21	CE 332	Environmental Engineering Sessional	3-I	1.5	3
22	CE 342	Geotechnical Engineering Sessional	3-I	1.5	3
23	CE 317	Design of Concrete Structures II	3-II	3	3
24	CE 333	Waste Water and Sanitation Engineering	3-I	4	4
25	CE 343	Foundation Engineering	3-II	3	3
26	CE 351	Fundamentals of Transportation Engineering	3-II	3	3
27	CE 361	Open Channel Hydraulics	3-II	3	3
28	CE 316	Concrete Structures Design Sessional I	3-II	1.5	3
29	CE 362	Open Channel Hydraulics Sessional	3-II	1.5	3
30	CE 300	Civil Engineering Students' Internship Programme (CESIP)	3-II	1.5	3 wks
31	CE 411	Structural Analysis and Design II	4-I	3	3
32	CE 413	Design of Steel Structures	4-I	3	3
33	CE 451	Highway Materials, Pavement Design and Railways	4-I	4	4
34	CE 463	Hydrology and Irrigation Engineering	4-I	4	4
35	CE 410	Concrete Structures Design Sessional II	4-I	1.5	3
36	CE 414	Steel Structures Design Sessional	4-I	1.5	3
37	CE 452	Highway Materials, Mix Design and Traffic Engineering Sessional	4-I	1.5	3
38	CE 400	Project and Thesis	4-I & II	4	8
39	CE 450	Capstone Project	4-I & II	3	6

4.4 List of Elective Courses

Structural Engineering

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 412	Bridge Design Sessional	4-II	1.5	3
2	CE 415	Prestressed Concrete	4-II	2	2
3	CE 417	Design of Concrete Structures III	4-II	2	2
4	CE 419	Introduction to Finite Element Method	4-II	2	2
5	CE 421	Dynamics of Structures	4-II	2	2
6	CE 423	Structural Safety	4-II	2	2
7	CE 425	Seismic Design of Structures	4-II	2	2
8	CE 427	Advanced Solid Mechanics	4-II	2	2
9	CE 429	Design of Steel-Concrete Composite Structure	4-II	2	2

Environmental Engineering

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 431	Natural Resources and Renewable Energy	4-II	2	2
2	CE 433	Solid and Hazardous Waste Management	4-II	2	2
3	CE 435	Environmental Pollution and Management	4-II	2	2
4	CE 437	Climate Change and Disaster Management	4-II	2	2
5	CE 439	Environmental Impact Assessment and Sustainability	4-II	2	2
6	CE 432	Design of Water Supply, Sanitation and Sewerage Systems	4-II	1.5	3

Geotechnical Engineering

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 443	Earth Retaining Structures	4-II	2	2
2	CE 445	Elementary Soil Dynamics	4-II	2	2
3	CE 447	Soil-Water Interaction	4-II	2	2
4	CE 449	Numerical Methods in Geotechnics	4-II	2	2
5	CE 442	Foundation Design Sessional	4-II	1.5	3

Transportation Engineering

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 453	Traffic Engineering Design and Management	4-II	2	2
2	CE 455	Pavement Management, Drainage and Airport Engineering	4-II	2	2
3	CE 457	Urban Transportation Planning & Management	4-II	2	2
4	CE 459	Intelligent Transportation System	4-II	2	2
5	CE 461	Railway Engineering	4-II	2	2
6	CE 454	Traffic Studies and Pavement Design Sessional	4-II	1.5	3

Water Resource Engineering

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
1	CE 465	Groundwater Engineering	4-II	2	2
2	CE 467	Flood Mitigation and Management	4-II	2	2
3	CE 469	River Engineering	4-II	2	2
4	CE 471	Hydraulic Structures	4-II	2	2

SL.	Course Code	Course Name	Level- Term	Cr. Hr.	Ct. Hr.
5	CE 473	Coastal Engineering	4-II	2	2
6	CE 472	Hydraulic Structures Design Sessional	4-II	1.5	3

4.5 <u>Term Wise Distribution of Courses for B.Sc. Engg. in Civil Engineering (CE)</u>

Level – 1, Term – I

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	CE 101	Analytical Mechanics	3.0	3	Т
2	PHY 101	Waves and Oscillation, Optics and Modern Physics	3.0	3	Т
3	CHEM 101	Fundamentals of Chemistry	3.0	3	Т
4	MATH 101	Differential and Integral Calculus	3.0	3	Т
5	GEBS 101/ GES 101	Bangladesh Studies/ Fundamentals of Sociology	2.0	2	Т
6	CE 100	Civil Engineering Drawing	1.5	3	S
7	CSE 176	Computer Programming Sessional	1.5	3	S
8	ME 132	Workshop Technology Sessional	1.5	3	S
9	CHEM 102	Chemistry Sessional	1.5	3	S
	Total [Theory	T(T) - 5, Sessional $(S) - 4$]	20	26	

Level – 1, Term – II

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	CE 103	Surveying and Spatial Information Engineering	3.0	3	Т
2	EECE 165	Basic Electrical Technology	3.0	3	Т
3	PHY 107/ CHEM 105	Structure of Matter, Heat and Temperature, Kinetics and Kinematics/ Environmental Chemistry	3.0	3	Т

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
4	MATH 103	Differential Equations and Matrix	3.0	3	Т
5	GELM 175	Leadership and Management	2.0	2	Т
6	CE 102	Computer Aided Drawing	1.5	3	S
7	PHY 102	Physics Sessoinal	1.5	3	S
8	LANG 102	Communicative English I	1.5	3	S
9	CE 104	Practical Surveying	1.5	3 wks	S
Tota	al [Theory (T)	20	23		

Level – 2, Term – I

SL.	Course	Course Name	Cr.	Ct.	Turne
SL.	Code	Course Maine	Hr.	Hr.	Туре
1	CE 211	Mechanics of Solids I	3.0	3	Т
2	CE 261	Fluid Mechanics	3.0	3	Т
3	CE 203	Engineering Geology and Geomorphology	3.0	3	Т
4	MATH 201	Vector Analysis, Laplace Transform and Coordinate Geometry	3.0	3	Т
5	GEA 201/ GEE 201	Principles of Accounting/ Fundamentals of Economics	2.0	2	Т
6	CE 200	Details of Construction	1.5	3	S
7	CE 210	GIS and Remote Sensing	1.5	3	S
8	CE 262	Fluid Mechanics Sessional	1.5	3	S
9	LANG 202	Communicative English II	1.5	3	S
	Total [Theor	Y(T) - 5, Sessional $(S) - 4$]	20	26	

Level – 2, Term – II

_

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	CE 201	Engineering Materials	3.0	3	Т
2	CE 205	Numerical Methods and Data Analysis	3.0	3	Т
3	CE 213	Mechanics of Solids II	3.0	3	Т

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
4	MATH	Applied Mathematics for	3.0	3	Т
-	203	Engineers	5.0	5	1
5	GEEP 203	Engineering Ethics and	2.0	2	Т
5	GEEF 203	Professional Practices	2.0	Δ	T
6	CE 208	Quantity Surveying	Quantity Surveying 1.5		S
7	CE 212	Structural Mechanics and	1.5	3	S
/	CE 212	Materials Sessional	1.5		3
8	CSE 274	Engineering Computations	1.5	3	S
0	CSE 274	Sessional	1.5	3	3
9	ARCH 214	Architectural, Engineering and	1.5	3	S
9		Planning Appreciation	1.5	5	3
	Total [Theo	bry $(T) - 5$, Sessional $(S) - 4$]	20	26	

Level – 3, Term – I

SL.	Course Code	Course Name Cr. Hr.		Ct. Hr.	Туре
1	CE 311	Structural Analysis and Design I	4.0	4	Т
2	CE 315	Design of Concrete Structures I	3.0	3	Т
3	CE 331	Water Supply Engineering	3.0	3	Т
4	CE 341	Principles of Soil Mechanics	4.0	4	Т
5	GESP 303	Sustainability of Development Projects	2.0	2	Т
6	CE 332	Environmental Engineering Sessional	1.5	3	S
7	CE 342	Geotechnical Engineering Sessional	1.5	3	S
8	GERM 352	Fundamentals of Research Methodology	1.0	2	S
	Total [Theorem	ry $(T) - 5$, Sessional $(S) - 3$]	20	24	

Level – 3, Term – II

SI	L.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	L	CE 317	Design of Concrete Structures II	3.0	3	Т

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
2	CE 333	Waste Water and Sanitation Engineering	4.0	4	Т
3	CE 343	Foundation Engineering	3.0	3	Т
4	CE 351	Fundamentals of Transportation Engineering	3.0	3	Т
5	CE 361	Open Channel Hydraulics	3.0	3	Т
6	CE 316	Concrete Structures Design Sessional I	1.5	3	S
7	CE 362	Open Channel Hydraulics Sessional	1.5	3	S
8	CE 300	Civil Engineering Students' Internship Programme (CESIP)	1.5	3 wks	-
T	otal [Theory	T(T) - 5, Sessional (S) $- 2$, CESIP]	20.5	22	

Level – 4, Term – I

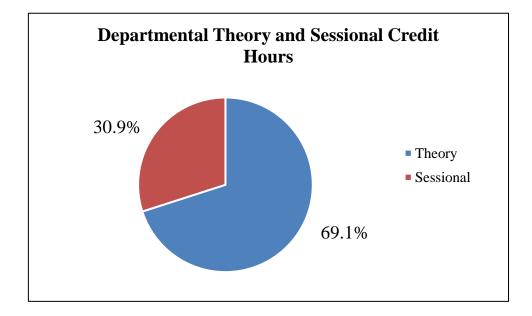
SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	CE 411	Structural Analysis and Design II	3.0	3	Т
2	CE 413	Design of Steel Structures	3.0	3	Т
3	CE 451	Highway Materials, Pavement Design and Railways	4.0	4	Т
4	CE 463	Hydrology and Irrigation Engineering	4.0	4	Т
5	CE 410	Concrete Structures Design Sessional II	1.5	3	S
6	CE 414	Steel Structures Design Sessional	1.5	3	S
7	CE 452	Highway Materials, Mix Design and Traffic Engineering Sessional	1.5	3	S
8	CE 400	Project and Thesis	1.0	2	-
9	CE 450	Capstone Project	1.0	2	-
To		y (T) – 4, Sessional (S)– 3, Project and Thesis, Capstone Project]	20.5	27	

Level – 4, Term – II

SL.	Course Code	Course Name	Cr. Hr.	Ct. Hr.	Туре
1	CE 4XX	Two Theory Courses in Major Division from Elective Courses	4.0	4	Т
2	CE 4XX	Two Theory Courses in Minor Division from Elective Courses	4.0	4	Т
3	GEPM 401	Project Planning and Construction Management	3	Т	
4	CE 4XX	One Lab Course in Major Division from Elective Courses	1.5	3	S
5	CE 4XX	One Lab Course in Minor Division from Elective Courses	1.5	3	S
8	CE 400	Project and Thesis	3.0	6	-
9	CE 450	Capstone Project	2.0	4	-
То	- •	T) – 5, Sessional (S) – 2, Project and esis, Capstone Project]	19	27	

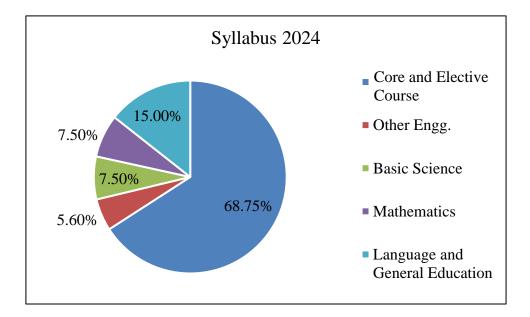
4.6 <u>Summary of Credit Distribution - Level and Termwise</u>

Level- Term	Contact Hours for Theory Courses	Contact Hours for Sessional Courses	Total Credit Hours	Total Contact Hours
1-I	14	12	20	26
1-II	14	9+3 wks (Survey)	20	23+3 wks (Survey)
2-I	14	12	20	26
2-II	14	12	20	26
3-I	16	8	20	24
3-II	16	6+3 wks (CESIP)	20.5	22 + 3 wks (CESIP)
4-I	14	9+2 hr. (Project and Thesis) + 2 hr. (Capstone Project)	20.5	23+2 hr. (Project and Thesis)+2 hr.


Level- Term	Contact Hours for Theory Courses	Contact Hours for Sessional Courses	Total Credit Hours	Total Contact Hours
				(Capstone Project)
4-II	11	6+6 hr. (Project and Thesis) + 4 hr. (Capstone Project)	19	17+6 hr. (Project and Thesis) + 4 hr. (Capstone Project)
Total	113	87 + 6 wks	160	201 + 6 wks

Level and	Contact Hours/Week			Credit Hours/Week			No. of Courses		
Term	Theory	Sessional	Total	Theory	Sessional	Total	Theory	Sessional	
Level-1 Term-I	14	12	26	14	6	20	5	4	
Level-1 Term- II	14	9+3 wks	23+3 wks	14	4.5+1.5 Survey	20	5	3+Survey	
Level-2 Term-I	14	12	26	14	6	20	5	4	
Level-2 Term- II	14	12	26	14	6	20	5	4	
Level-3 Term-I	16	8	24	16	4	20	5	3	
Level-3 Term- II	16	6+3 wks	22 + 3 wks	16	3+1.5 CESIP	20.5	5	2+CESIP	
Level-4 Term-I	14	9+2 hr. (Project and Thesis) + 2 hr. (Capstone Project)	27	14	4.5+1 Project and Thesis + 1 Capstone Project	20.5	4	3+ Project and Thesis+ Capstone Project	
Level-4 Term- II	11	6+6 hr. (Project and Thesis) + 4 hr. (Capstone Project)	27	11	3+ 3 Project and Thesis + 2 Capstone Project	19	5	2+ Project and Thesis+ Capstone Project	
Grand Total	113	87 + 6 wks	201+ 6 wks	113	47	160	39	25 + Survey + CESIP + Project and Thesis+ Capstone Project	

4.7 <u>Summary of Theory and Sessional Courses- Level and Termwise</u>


Level/ Term	Theory	Sessional	Total
Level-1 Term-I	3.0	1.5	4.5
Level-1 Term-II	3.0	1.5+1.5 Survey	4.5
Level-2 Term-I	9.0	4.5	13.5
Level-2 Term-II	9.0	3.0	12.0
Level-3 Term-I	14.0	3.0	17.0
Level-3 Term-II	16.0	3+1.5 CESIP	20.5
Level-4 Term-I	14.0	4.5+ 1 Project and Thesis + 1 Capstone Project	20.5
Level-4 Term-II	8.0	3+ 3 Project and Thesis + 2 Capstone Project	16
Total	76.0	34.0	110.0

4.8 <u>Summary of Departmental Theory and Sessional Courses - Level and Termwise</u> <u>Credit Hours</u>

4.9 <u>Summary of Credit Hours for Departmental (core and elective), Inter-</u> <u>disciplinary, Basic Science. Mathematics, and General Education Courses</u>

Level/ Term	Dept. (Core & Elective)	Inter- disciplinary	Basic Science	Mathematics	Language	General Education	Total
Level-1 Term-I	4.5	3	7.5	3	-	2	20
Level-1 Term-II	6	3	4.5	3	1.5	2	20
Level-2 Term-I	13.5	-	-	3	1.5	2	20
Level-2 Term-II	12	3	-	3	-	2	20
Level-3 Term-I	17	-	-	-	-	3	20
Level-3 Term-II	20.5	-	-	-	-	-	20.5
Level-4 Term-I	20.5	-	-	-	-	-	20.5
Level-4 Term-II	16	-	-	-	-	3	19
Total	110	9	12	12	3	14	160
% of Courses	68.75%	5.6%	7.5%	7.5%	1.9%	8.75%	100.00%

4.10 <u>Teaching Strategy</u>

Multiple teaching and learning activities are necessary to achieve the intended outcomes, since students have different learning styles. It is therefore, the CE department planned to choose appropriate teaching and learning methods that will foster student's engagement in the learning process rather than students listening to the lectures passively. Student centred learning is about active participation of students in the classroom, and that active participation will be achieved by content/curriculum, teacher's interaction with the students and the environment that are directed towards students learning. The strategy includes:

a. **Face-to-Face Learning**

- Lecture /Presentation/ Discussion
- Practical / Tutorial / Studio
- Case Studies
- Assignment/Quiz
- Group discussion/projects
- Design and Research

b. Self-Directed Learning

- Non-face-to-face learning
- Revision
- Preparation of presentation
- Preparation of Lab Reports
- Preparation of Lab Test
- Engagement in Group Projects
- Preparation of Assignment/Quiz
- Preparation for final Examination

Details of teaching strategy for each of the courses under the heading of Teaching Learning Strategy is given in Chapters 5 and 6.

4.11 Assesment Strategy

Assessment of student achievement is an important aspect of Outcome-based education. Students will be assessed both directly and indirectly. Direct Assessment includes class tests, assignments, and Mid and Term final examinations. However, appropriate rubrics have been set to evaluate indirect assessment. Assessment process is aligned with the learning outcomes. Assessment supports the learners in their progress and validates the achievement of the intended learning outcomes at the end of the lecture/course/module. Assessment methods are adapted depending on the kind of outcomes that are aimed to be achived. The assessment strategy is given below:

a. <u>Theory Based Courses</u>

SL.		Components	Grading
1		Class Attendance	05%
	Continuous	Class Performance	05%
	Assessment	Class Test/ Assignment	20%
	(40%)	Mid-term Exam/ Project	10%
2	Final Examination	1	60%
	Total Marks		100%

b. <u>Sessional Courses</u>

The CE department offers different types of sessional courses which include laboratory investigations, design through use of modern tools and softwares, field survey, drawing etc. Thereby assessments vary depending on selected course. The following represents a typical assessment strategy for a regular sessional course-

SL.	C	Components	Grading
1		Class Performance	5%
	Continuous	Conduct of Lab Test	20%
	Assessment (60%)	Report Writing/Programming	15%
		Mid-term Evaluation (Exam/Project/Assignment)	20%
2	Final Evaluation (40%)	Final Exam (Exam/Project/Assignment)	30%
	(40 %)	Viva Voce/ Presentation	10%
]	100%	

Note: The above distribution of percentage is a general guideline. Department can rearrange to some extent if required.

Details of assessment strategy for each of the courses under the heading of assessment Strategy is given in Chapter 5.

CHAPTER 5

DETAILED SYLLABUS OF BASIC SCIENCE, MATHS, GENERAL EDUCATION, LANGUAGE, AND INTERDISCIPLINARY COURSES

5.1 Basic Sciences (Physics and Chemistry)

Physics

Spring Semester: Level 1 Term I

COURSE INFORMATION

Course Code: PHY 101Course Title: Waves and Oscillations, Optics and Modern Physics	Contact Hours Credit hours	: 3.00 : 3.00
--	-------------------------------	------------------

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is the basic physics in the field of waves and oscillations, optics and modern physics. The course will be emphasized the basic concepts, theories and solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE

- To define the different parameters, concepts, logical and critical thinking with scientific knowledge of waves and oscillations, optics and modern physics.
- To explain the basic theories and laws of waves and oscillations, optics and modern physics.
- To solve numerical and analytical problems regarding waves and oscillations, optics and modern physics.

COURSE CONTENT

Waves and Oscillations: Simple Harmonic Motion (SHM) and its properties, differential equation of a SHM and its solution, total energy and average energy of a body executing SHM, simple pendulum, torsional pendulum, spring-mass system, LC oscillatory circuit, two body oscillation and reduced mass, Composition of SHM, Damped oscillations, and its different condition, forced oscillations and its different condition, resonance, Wave motion : expression for a plane progressive wave, differential equation of wave motion, energy density of wave motion, average kinetic and potential energy of wave motion, Stationary wave.

Optics: Combination of lens, equivalent lens and power, Defects of images and different aberrations, Interference of light, Young's double slit experiment, interference in thin films, Newton's ring, Diffraction of light, Fraunhofer and Fresnel diffraction, diffraction by single slit and double slit, diffraction grating, Fraunhofer diffraction at a circular aperture, resolving power of optical instrument, Polarization of light, Brewster's law, Malus law, polarization by double

refraction, Nicole prism, optical activity and polarimeters, Laser: spontaneous and stimulated emission.

Modern Physics: Relativity : Frame of reference, postulates of special theory of relativity, Galilean transformation, Lorentz transformation, length contraction, time dilation, velocity addition, relativity of mass, mass energy relation, momentum energy relation, Photoelectric effect, Compton effect, de Broglie matter wave, Bohr atom model and explanation, atomic orbital and energy equation, classification of nuclei, nuclear mass and binding energy, Radioactivity, radioactive decay law, half-life, mean life, nuclear reaction, introduction to nuclear reactor.

COL													
No.				P	ROGI	RAMI	ME O	UTC	OME	S (PC)s)		
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Define different basic laws and parameters in the field of waves and oscillations, optics and modern physics such as simple harmonic motion, damped oscillations, interference, diffraction, polarization, relativity, photoelectric effect, Compton effect, radioactivity, etc.	\checkmark											
2	Explain different basic theories in the field of waves and oscillations, optics and modern physics such as the SHM, damped motion, wave motion, interference, diffraction, polarization, special theory of relativity, Compton theory, nuclear transformation, nuclear reaction etc.	\checkmark											
3	Solve quantitative problems in the field of waves and oscillations, optics and modern physics such												

PO1: solutio Enviro Comn	as SHM, damped motion, wave motion, interference, diffraction, polarization, relativity, photoelectric effect, Compton shift, radioactivity, etc. cam Outcomes (PO) : Engineering knowledge, ons, PO4 : Investigation, onment and sustainability nunication, PO11 : Project	PO5: Modern t 7, PO8: Ethics, 1t management	ool usage PO9 : Ind and finan	e, PO6 : T lividual a	The engiand team	ineer and nwork, F	l society, PO7 : PO10 :
COU	RSE OUTCOMES ANI) GENERIC S	KILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Define different basic laws and parameters in the field of waves and oscillations, optics and modern physics such as simple harmonic motion, damped oscillations, interference, diffraction, polarization,relativity, photoelectric effect, Compton effect, radioactivity, etc.	1	C1	-	_	1	Quiz, Mid Term examination, Final Exam
CO2	Explain different basic theories in the field of waves and oscillations, optics and modern physics such as the SHM, damped motion, wave motion, interference, diffraction, polarization, special theory of relativity, Compton theory, nuclear	1	C2	-	-	1	Mid Term examination, Final Exam

	transformation, nuclear reaction etc.						
CO3	Solve quantitative problems in the field of waves and oscillations, optics and modern physics such as SHM,damped motion, wave motion, interference, diffraction, polarization,relativity, photoelectric effect, Compton shift, radioactivity, etc.	1	C3 C4	-	-	2	Class Assessment, Quiz, Mid Term examination, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture (3 hours/week x 14 weeks)	42
Guided Learning	
Tutorials/Assignment Preparation	22
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	42
Preparation for test and examination	20
Assessment	
Pop quiz/ Class Test/Mid-Term Examination	03
Final Examination	03

Total			132	
TEAC	CHING ME	THODOLOGY		
Lectur	e and Discu	ssion, Problem Based Learning (F	PBL)	
TEAC	CHING SCI	HEDULE		
Week	Lectures	Topics		Assessment s
	1	Introductory class: Brief discuss requirements of the course, asses	CT/ Assignment	
1	2	Periodic motion, oscillatory moti (SHM), properties of SHM, diffe solution of SHM, graphical repre		
	epoch, time period, of SHM			
	4	Total energy and average energy		
2	5	Simple pendulum, torsional pend		
	6	LC oscillatory circuit, two body		
	7	Composition of SHM		
3	8	Composition of SHM, problems		
	9	Damped oscillations and its diffe		
	10	Displacement equation of dampe different conditions, electric dam	CT/ Assignment	
4	11	Forced oscillations and its different displacement equation of forced	-	
	12	Wave motion: expression for a p differential equation of wave mo velocity		
	13	Energy density of a plane progre in a plane progressive wave, pro		
5	14	Stationary wave: node, anti-node	e, problems	
	15	Lens and combination of lenses, lens, cardinal points		
Ĺ	16	Defects of images and different a	Mid Term/	
6	17	Defects of images and different a	aberrations	Assignment

	18	Interference of light, young's double slit experiment	
	19	Analytical treatment of interference, energy distribution	
7	20	Interference fringes, interference in thin films	
-	21	Newton's ring, Interferometer	
	22	Diffraction: Fresnel & Fraunhofer diffraction, diffraction by single slit	
8	23	Diffraction by double slit, diffraction gratings	
	24	Fraunhofer diffraction at a circular aperture, resolving power of optical instrument	
	25	Polarization of light, Brewster's law, Malus' law	
9	26	Polarization by double refraction, Nicol prism: Polarizer and analyzer	
	27	Optical activity: specific rotation, polarimeters	
	28	Laser: spontaneous and stimulated emission, applications of laser	
10	29	Theory of relativity: Frame of reference, postulates of special relativity, Galilean relativity, Galilean transformation	
	30	Lorentz transformations, length contraction, time dilation	
	31	Velocity addition, relativistic mass and its expression,	
11	32	Mass and energy equivalence equation and concept of massless particles and its expression, momentum energy relation, problems	
	33	Photoelectric effect, photocurrent and work function, kinetic energy, stopping potential	
	34	Photoelectric equation, characteristics of photoelectric effect	CT/
12	35	Compton effect: definition, Compton wavelength shift, limitation	Assignment
	36	De Broglie concept, condition for wave and particle behavior, Bohr atomic model	
13	37	Expression for Bohr radii and orbital energy for hydrogen atom	
13	38	Classification of nuclei, nuclear mass and nuclear binding energy	

	39	Radioac	Radioactivity: Radioactive decay law, half- life									
	40		Mean life, nuclear reaction: concept of Fusion, Fission and nuclear chain reaction									
14	41	General	General idea on nuclear reactor and nuclear power plant									
	42	Review	Review of the syllabus									
ASSESSMENT STRATEGY												
	Components				Diagona							
	Compone	ents	Grading	CO	Blooms Taxonomy							
(Assi Te	Compone inuous As ignments/ rm/ Active Participati	sessment CT/ Mid e Class	Grading 40%	CO CO1, CO2, CO3								

REFERENCE BOOKS

Total Marks

1. Physics for Engineers: Part-I and Part-II: Dr Giasuddin Ahmad

100%

2. Physics, Volume I and Volume II: Resnick and Halliday

3. Fundamentals of Physics: Halliday, Resnick and Walker

4. Physics for Scientists and Engineers: Serway and Jewett

5. Waves and Oscillations: Brij Lal and Subramannyam

Physics

Fall Semester: Level 1 Term II

COURSE INFORMATION									
Course Code	: PHY 107	Contact Hours	: 3.00						
Course Title	: Structure of Matter, Heat and Temperature, Kinetics and Kinematics	Credit hours	: 3.00						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is the basic physics in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics. The course will emphasize the basic concepts, theories and solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE

- To define the different parameter and concepts of Structure of Matter, Heat and Temperature, Kinetics and Kinematics.
- To explain the basic theories of Structure of Matter, Heat and Temperature, Kinetics and Kinematics.
- To solve numerical problems regarding Structure of Matter, Heat and Temperature, Kinetics and Kinematics.

COURSE CONTENT

Structure of matter: Crystalline and non-crystalline solids, single crystal and poly-crystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between inter-planar spacing and Miller indices, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns; defects in solids: point defects, line defects, surface defects, bonds in solids, band theory of solids: distinction between metal, semiconductor and insulator, inter-atomic distances, calculation of cohesive and bonding energy.

Heat and Temperature: Heat energy and temperature; Thermal conductivity, specific heat, basic concept and equations of heat transfer, Workout Examples of Heat transfer through different mediums, rate of heat transfer; heat losses, conduction, convection and radiation.

Kinetics and Kinematics: Introduction to Kinetics and Kinematics; Plane Motion (Linear, Curvilinear and Angular motion, Trajectory, Principles of Falling Objects, S.H.M.); Work, Kinetic Energy, Power, Impulse and Momentum.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs))1)2	72)4)5	90	77)8	6(010)11	012
		РС	PC	DQ	РС	PC	PC	PC	PC	PC	PC	PC	PC

1	Define different basic parameters in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as crystal structure, crystal defects, heat transfer, linear and angular momentum	V											
	etc.												
2	Explain different basic theories in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as the Bragg's law, bonding energy, thermal conductivity, Trajectory, Principles of Falling Objects etc.	V											
3	Solve quantitative problems in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as packing factor, Miller indices, rate of heat transfer, Work, Kinetic Energy, Power, Impulse and	V											
Dream	Momentum etc.												
PO1: soluti Envir Comr	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 												
COU	RSE OUTCOMES ANI) GEN	IERIO	CS	SKILLS								
No.	Course Outcomes	Corresponding			Bloom's Taxonomy	٩	L	A		K	Assessment	INICIDORS	
CO1	Define different basic parameters in the field	1			C1	-		-		1	Quiz Tern	z, Mid n	

	of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as crystal structure, crystal defects, heat transfer, linear and angular momentum etc.						examination, Final Exam
CO2	Explain different basic theories in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as the Bragg's law, bonding energy, thermal conductivity, Trajectory, Principles of Falling Objects etc.	1	C1/ C2	-	_	1	Mid Term examination, Final Exam
CO3	Solve quantitative problems in the field of Structure of Matter, Heat and Temperature, Kinetics and Kinematics such as packing factor, Miller indices, rate of heat transfer, Work, Kinetic Energy, Power, Impulse and Momentum etc.	1	C2	-	-	2	Class Assessment, Quiz, Mid Term examination, Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY							
Teachi	ng and Lear	ning Activities	Enga	gement (hours)			
Lecture	`	rning veek x 14 weeks) 2 hours/14 weeks)	42 2				
Guide	d Learning						
Tutoria	lls/Assignm	ent Preparation		15			
Individ learnin	g)	rning g (1-hour lecture \approx 1-hour t and examination	36 22				
		st/Mid-Term Examination		02 03			
Total				120			
TEAC	HING ME	THODOLOGY					
(PBL)		ssion, Co-operative and Collaborat	ive Method, Prob	lem Based Learning			
	HING SCH						
Week			1	Remarks			
	1	Introductory class: Brief discussi syllabus, basic requirements of th assessment of the course		CT/ Assignment/ Final Exam			
1	2	erystalline al structure, s and non-					
	3	Bravais lattices Unit cell, lattice parameters, prin primitive cells and their disti symbols, crystal structure of NaC	nctions, lattice				
	4	numerical					
2	5	Atomic radius, packing factor and number for different structures					
	6	Relation between lattice constant solids and related numerical prob	lems				
3	7	Inter-planer spacing, relation planar spacing and Miller indices					

	8	X-ray diffraction, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns problems	
	9	Defects in solids: point defects, line defects, surface defects	
	10	Defects in solids: point defects, line defects, surface defects	CT/ Assignment/ Mid Term Exam
4	11	Atomic arrangement in solid: different types of bonds in solids	
	12	Band theory of solids: valence band, conduction band, energy gap, distinction between metal, semiconductor and insulator	
e	13	Potential, cohesive energy, binding energy, Madelung constant, inter-atomic distance, calculation of total potential energy of a pair of atoms	
5	14	Calculation of total potential energy at the equilibrium separation of an ionic crystal, problems	
	15	Heat energy and temperature	
	16	Different thermometers	Mid Term/
6	17	Mathematical Problems	Assignment/ Mid Term/ Final Exam
	18	Mathematical Problems	Termi/ Timar Exam
	19	Thermal conductivity	
7	20	specific heat	
	21	Mathematical Problems	
	22	basic concept and equations of heat transfer	
8	23	Workout of Heat transfer through different mediums	
	24	Mathematical Problems	
	25	rate of heat transfer; heat losses, conduction, convection and radiation	
9	26	rate of heat transfer; heat losses, conduction, convection and radiation	
	27	rate of heat transfer; heat losses, conduction, convection and radiation	
	28	Mathematical Problems	
10	29	Introduction to Kinetics and Kinematics	
-	30	Plane Motion (Linear, Curvilinear and Angular motion, Trajectory, Principles of Falling Objects)	
	31	Mathematical Problems	
11	32	Plane Motion (Linear, Curvilinear and Angular motion, Trajectory, Principles of Falling Objects)	
	33	Mathematical Problems	

	34	Plane Motion (Linea	r Curvilinea	r and Angular	CT/ Assignment/ Final				
	51	motion, Trajectory, H	•	Exam					
12	35	Mathematical Proble							
	36								
	37	Work	Work Work						
13	38								
	39	Kinetic Energy, Pow	er						
	40	Impulse and Momen	tum						
14	41	Mathematical Proble	ems						
	42	Mathematical Proble	ems						
ASSES	SSMENT S	STRATEGY							
	Com	ponents	Grading	COs	Blooms Taxonomy				
(Assig	gnments/ C	ns Assessment T/ Mid Term/ Active articipation)	40%	CO1, CO2, CO	3 C1, C2, C3				
		al Exam	60%	CO1, CO2, CO	3 C1, C2, C3				
		ıl Marks	100%						
REFERENCE BOOKS									
	1. Fundamentals of Physics: Halliday, Resnick and Walker								
1. Fur	ndamentals	of Physics: Halliday, I	Resnick and '	Walker					
		of Physics: Halliday, l cientists and Engineers:							
2. Phy	vsics for Sc	• •	Serway and	Jewett					
2. Phy 3. An	ysics for So alytical Me	cientists and Engineers:	Serway and S. D. Cha	Jewett mbers	kow				

Chemistry

Spring Semester: Level 1 Term I

Course Code			
	: CHEM 101	Contact Hours	: 3.00
Course Title	: Fundamentals of Chemistry	Credit hours	: 3.00
PRE-REQUIS	ITE		
None			
CURRICULU	M STRUCTURE		
Outcome Based	l Education (OBE)		
SYNOPSIS/RA	ATIONALE		
The course em	basic chemistry covering the field of phasizes on the basic concepts, the in a wide spectrum of engineering d	ories and solve quantitative	•
OBJECTIVE			
chemistry.To explain	the different parameter and conc basic reaction mechanism of selection merical problems of inorganic, orga	ve organic reactions.	, and physici
COURSE CO	1 0 0		
electronic confi	ure: Concepts of atomic structure, I gurations, Heisenberg's uncertainty : Periodic classification of elements	principle	-

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES			PF	ROGR	AMN	AE O	UTCC	OMES	S (PC	Ds)		
	(COs)												
		PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	PO12
1	Be able to define/identify the different parameters and fundamental concepts regarding Inorganic, Organic and Physical chemistry.	\checkmark											
2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	\checkmark											
3	Be able to explain/illustrate/derive different theories based on colligative properties, chemical equilibrium, chemical kinetics, thermochemistry and electrochemistry, and the mechanism of selective organic reactions.	\checkmark											
4	Solve/Analyze different problems related to inorganic and physical chemistry		\checkmark										
	ram Outcomes (PO):					n a -	-	• • •	_		~		
	Engineering knowledge, PC				•			-	-			olutio	ns,
	Investigation, PO5 : Modern onment and sustainability, P		0			0			•				
	nunication, PO11 : Project m												
COU	RSE OUTCOMES AND G	ENE	RIC	SKI	LLS								
		23											
No.	Course Outcomes	Corresponding	POs		Bloom's Taxonomy		ч	A	۵	Y	Assessment Methods		
CO1	Be able to define/identify the different parameters and fundamental concepts regarding Inorganic,	1		(C1	-	-	-		1	Quiz Term Exan Final	ninati	on,

	Organic and Physical chemistry.						
CO2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	1	C3	-	-	1	Quiz, Mid Term Examination, Final Exam
CO3	Be able to explain/illustrate/derive different theories based on colligative properties, chemical equilibrium, chemical kinetics, thermochemistry and electrochemistry, and the mechanism of selective organic reactions.	1	C2	-	-	1	Quiz, Mid Term Examination, Final Exam
CO4	Solve/Analyze different problems related to inorganic and physical chemistry	2	C4	_	-	1	Class Assignment, Quiz, Mid Term Examination, Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	14
Practical / Experiment	28
Guided Learning	

Wook Tonic		Romarks				
TEACHING SCHEDULE						
Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)						
TEACHING METHODOLOGY						
Total	120					
Final Lab Exam	03					
Quiz	02					
Continuous Assessment	03					
Assessment						
Preparation of Viva	12					
Preparation of Quiz	20					
Preparation of Lab-test	20					
Independent Learning						
Lab Report Preparation	18					

Week	Торіс	Remarks
	Concepts of atomic structure, Different atom models	Class Test,
1	Concepts of atomic structure, Different atom models	Final Exam
	Quantum numbers, Electronic configurations	
	Hydrogen spectral lines, Heisenberg's uncertainty principle	
2	Classification of elements according to electronic configurations	
	Periodic classification of elements	
	Periodic properties of elements, Properties and uses of noble gases	
3	Periodic properties of elements, Properties and uses of noble gases	
	Chemical bonding (types, properties, Lewis theory, VBT)	
	Molecular orbital theory (MOT)	Class Test, Final
4	Molecular orbital theory (MOT)	Exam
	Hybridization and shapes of molecules	
	Hybridization and shapes of molecules	
5	Hybridization and shapes of molecules	
	Oxidation-reduction, Substitution	
	Addition, Polymerization, Alkylation	
6	Phase Rule: Basic terms and phase rule derivation	
	Phase diagram of water	
	Different concepts of acids-bases	Mid Term, Final
7	Buffer solution, Mechanism of buffer solution	Exam
	Henderson-Hasselbalch equation	
8	Solutions and their classification,	

	Units of expressin			
	Effect of tempera limitations of Hen	and		
	Colligative proper			
9	Raoult's law, dev point			
	• •		s law of osmotic pressure	;
	Laws of thermoch			
10		f formation, Kirchof	-	
		tion, Heat of reaction		
			chemical equilibrium, L	
11			Inits of equilibrium const	ant Exam
		K _p & K _C ,Van't Hoff'		
	÷.	-	geneous equilibrium	
	Le Chatelier's prin	-		
12			laws, Order of reacti	on,
12	-	reaction, Pseudo-orde	laws, Order of reacti	<u></u>
		reaction, Pseudo-orde		011,
			ons, units of rate consta	int.
	half-life of a reacti		,	
	Collision theory of	f reaction rates, Effec	et of increase of temperat	ure
13	on reaction rate, I	Determination and fa	ctors affecting the rate of	f a
	reaction			
			, Transition state theo	ory,
	Activation energy		a hatuan alatualutia	
		on, Electrolytic condu	ce between electrolytic a	uiu
14		· •	of electrolytes, Kohlraus	sch
	Law,	- S the conductivity		
	Conductometric ti	trations.		
ASSES	SSMENT STRATE	CGY		
Compo	onents	Grading	СО	Blooms Taxonomy
Contin	nuous Assessment			
	ss Assignments/		CO1, CO2, CO3,	
	Test/ Mid Term/	40%	CO4	C1, C2, C3, C4
	Active Class Participation)			
	al Examination	60%	CO1, CO2, CO3, CO4	C1, C2, C3, C4

Total Marks	100%						
REFERENCE BOOKS							
 Modern Inorganic Cher Concise Inorganic Cher A Textbook of Organic Organic Chemistry – M Principles of Physical C Essentials of Physical C Physical Chemistry – A 	nistry – J. D. Lee Chemistry – Arun forrison and Boyd Chemistry – Haque Chemistry – Bahl ar	Bahl and B. S. Bahl and Nawab					

Chemistry

Fall Semester: Level 1 Term II

Course Code	CHEM 105	Contact Hours	. 2.00
Course Code	: CHEM 105	Contact Hours	: 3.00
Course Title	: Environmental Chemistry	Credit hours	: 3.00
PRE-REQUIS	SITE		
None			
CURRICULU	IM STRUCTURE		
Outcome Base	d Education (OBE)		
SYNOPSIS/R The course is a soils and sedin Students will b	concerned with the interactions of nents which helps to understand be acquainted with a solid knowled	the elements of pollution edge of analytical chemis	on and their source stry to environmen
SYNOPSIS/R The course is a soils and sedin Students will b	concerned with the interactions of nents which helps to understand	the elements of pollution edge of analytical chemis	on and their source stry to environmen
SYNOPSIS/R The course is o soils and sedin Students will b processes whic OBJECTIVE • To develop natural env	concerned with the interactions of ments which helps to understand be acquainted with a solid knowled will be used in later semester ar a in depth understanding of chem- ironment.	the elements of pollution edge of analytical chemiss d also in professional life ical processes underlying	try to environmen try to environmen the operation of the
 SYNOPSIS/R The course is a soils and sedin students will be processes whice OBJECTIVE To develope natural env To recogni 	concerned with the interactions of ments which helps to understand be acquainted with a solid knowled th will be used in later semester ar a in depth understanding of chem- ironment. ze the mobility of various contami- how human impacts on chemical	the elements of pollution edge of analytical chemiss d also in professional life ical processes underlying nants in air, soils and wat	the operation of the
 SYNOPSIS/R The course is a soils and sedin Students will be processes whice OBJECTIVE To develope natural envelope To recogni To explain natural envelope 	concerned with the interactions of ments which helps to understand be acquainted with a solid knowled th will be used in later semester ar a in depth understanding of chem- ironment. ze the mobility of various contami- how human impacts on chemical	the elements of pollution edge of analytical chemiss d also in professional life ical processes underlying nants in air, soils and wat processes can lead to deg	the operation of the

pollutants; ozone hole and stratospheric ozone depletion; chemical and photochemical reactions in atmosphere; hydrocarbons and photochemical smog. **Aquatic chemistry:** Water properties; solubility of gases and solids; colloidal suspension;

Complexation reactions, solution approaches for aqueous equilibrium; Aqueous carbonate system; general concept on – alkalinity, pH, capacity diagram, electron activity; Redox equilibria; organic and inorganic pollutants; heavy metal contamination; adsorption isotherms; Chemical fate of pollutants.

Soil Chemistry: Soil Composition; acid-base and ion exchange equilibria in soil, pollution mobilization from farming. Chemistry of pesticides, insecticides, anti-biotic and food preservatives.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE			P	ROGI	RAMI	ME O	UTC	OME	S (PC	s)		
	OUTCOMES (COs))1)2)3)4)5)6	77)8	6(010)11	012
		PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC

1	Explain the chemical and biochemical principles of fundamental environmental processes in air, water, and soil.	\checkmark											
2	Identify the elements of pollution, their sources, and how contaminants propagate												
3	in environment. Understand basic chemical concepts to analyze chemical processes involved in different environmental compartments.	√											
PO1 solut Envir	ram Outcomes (PO): Engineering knowledge, ions, PO4: Investigation, ronment and sustainability munication, PO11: Project IRSE OUTCOMES ANI	PO5 : <i>y</i> , PO <i>et</i> mar	Mode 8: Eth nagem	ern to ics, l ent a	ool usa P O9 : 1 and fin	ige, i Indiv ance	PO6: 7	The en	ginee amwo	er and ork, P	l socie PO10 :		07:
No.	Course Outcomes	Corresponding	POs		Bloom's Taxonomy		Ρ	A		K		Assessment Methods	
CO1	Explain the chemical and biochemical principles of fundamental environmental processes in air, water, and soil.	1		C	22	-	-	-	1		Mid	s Test -term, l Exai	
CO2	Identify the elements of pollution, their sources, and how contaminants propagate in environment.	2		C	22	-		-	1		Mid	s Test -term, l Exai	
CO3	Understand basic chemical concepts to analyze chemical processes involved in different	1		C	22	-	-	-	2		Mid	s Test -term, l Exai	

environ	mental			
compar	tments.			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42
Guided Learning Tutorial/ Assignments	10
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning) Preparation for tests and examination	42 21
Assessment	
Continuous Assessment	2
Final examination	3
Total	120

TEACHING METHODOLOGY

Lecture, Tutorials, Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Topics	Assessments
	Introduction to environmental chemistry and chemistry concepts	Class Test,
1	Pollution perspective	Final exam
	Major pollutants	
2	Fate and behavior of chemicals in environment	
2	Ecological concepts in the environment	

	Types, sources, and degradation of pollutants	Final exam
	Atmospheric cycles; air pollution, and pollutants - criteria and critical pollutants;	
3	Effect of air pollution on human	
	Effect of air pollution on vegetation, and materials	
	ozone hole and stratospheric ozone depletion,	Mid Term,
4	Climate change, Greenhouse gas emission.	Final exam
	Air chemistry, chemical and photochemical reactions in atmosphere	
	Chemical and photochemical reactions in atmosphere	
5	hydrocarbons and photochemical smog.	
	Case studies	
	Introduction to aqueous chemistry	Class Test,
6	Solubility of gases and solids	Final exam
	Colloidal suspension	
	complexation reactions	
7	Solution approaches for aqueous equilibrium	
	Aqueous carbonate system, General concept on – alkalinity, pH, capacity diagram, electron activity	Mid Term, Final exam
	General concept on – alkalinity, pH, capacity diagram, electron activity	
8	Redox reactions, equilibria	
	Complexation reaction	
	Organic and inorganic pollutants, Aliphatic compounds, Heterocyclic compounds	
9	Behavior of organics in water	Class Test,
	Adsorption isotherms	Final exam
	Heavy metal contamination	
10	Chemical fate of pollutants in water	Final exam`
	Chemical fate of pollutants in water	
	Case studies	
11	Introduction to soil chemistry	
	Soil Composition;	
	Acid-base and ion exchange equilibria in soil	
12	Acid-base and ion exchange equilibria in soil	

	Pollution mobili	zation from farming			
	Chemistry of pe	sticides and insectic	ides		
13	Insecticides				
	Anti-biotics in e				
	Food preservativ	/es			
14	Case studies				
	Review class			-	
ASSES	SSMENT STRAT	EGY			
C	omponents	Grading	СО	Bloom	as Taxonomy
A (Clas CT/ M	Continuous Assessment s assignments/ id Term/ Active Participation)	40%	CO1, CO2, CO3	C	2, C2, C3
			CO1		C2
F	ïnal Exam	60%	CO2		C2
			CO3		C3
Т	otal Marks	100%			
REFE	RENCE BOOKS				
1 Co	neral Chemistry	by Fibhing $DD \Delta I'$	TBS Publishers & Distrib	utors Del	

2. Chemistry and Chemical Reactivity, J.C. Kotz and Paul Treichel, (Sanders)

Physics Sessional

Fall Semester: Level 1 Term II

COURSE INF	FORMATION						
Course Code	: PHY 102	Contact Hours	: 3.00				
Course Title	: Physics Sessional	Credit hours	: 1.50				
PRE-REQUIS	SITE						
None							
CURRICULU	IM STRUCTURE						
Outcome Base	d Education (OBE)						
SYNOPSIS/R	ATIONALE						
optics, mechan emphasized the in a wide spec	a laboratory course for the basi nics, electricity, modern physic e fundamental experiments on di trum of engineering disciplines ic physics practically as well as	cs and thermal physics. fferent fields of physics wh . This laboratory course wi	The course will be ich can be applicable ill enable students to				
OBJECTIVE							
-	basic physics knowledge practi use of basic scientific instrume	•					
COURSE CO	NTENT						

Quantitative measurement of different parameters in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics such as:

Specific resistance of materials, high resistance, resistance of a galvanometer, Electrochemical equivalent (ECE) of copper, comparison of the E.M.F's of two cells, radius of curvature, wavelength of light, focal length of lens, specific rotation of sugar, refractive index of a liquid, thermal conductivity of a bad conductor, temperature co-efficient of resistance, pressure co-efficient of a gas, specific heat of a liquid, acceleration due to gravity, spring constant, rigidity modulus, young's modulus, moment of inertia, conservation of linear momentum, frequency of a tuning fork, surface tension, Planck's constant.

COU	IRSE OUTCOMES ANI) SK											
No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
	OUTCOMES (COS)	PO1	P02	PO3	P04	PO5	P06	PO7	P08	60d	P010	P011	PO12
1	Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	\checkmark											
2	Describe the different phenomena regarding												

		T 1										T	1
	waves and oscillations,												
	optics, mechanics,												
	electricity, modern												
	physics and thermal												
	physics etc.												
3	Construct												
	experiments by an												
	individual or by a												
	group to determine												
	different phenomena												
	regarding waves and									N			
	oscillations, optics,												
	mechanics, electricity,												
	modern physics and												
	thermal physics etc.												
4	Prepare a report for												
	an experimental work.												
	ons, PO4 : Investigation, onment and sustainability					0			0				07.
Envir Comr	ons, PO4 : Investigation, onment and sustainability nunication, PO11 : Projec RSE OUTCOMES ANI	y, PO8 et man	8: Eth	nics, I nent a	P O9 : 1 nd fin	Indivitation	idual	and te	amw	ork, F	PO10 :		07.
Enviro Comm COU	onment and sustainability nunication, PO11 : Project	y, PO8 et man	8: Eth agen NER	nics, l nent a	PO9: 1 nd fin KILL	Indivitation	idual	and te	amw	ork, F	PO10: rning tu		
Envir Comr	onment and sustainability nunication, PO11: Projec RSE OUTCOMES ANI	y, PO ext man D GE Buipuodsa	8: Eth agen NER	nics, l nent a	PO9: 1 nd fin KILL	Indivitance	idual : ., PO1	and te 2: Lif	amw	ork, P	PO10: ming Assessment	z, Fina	

CO3	Construct experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	9	C2	-	-	2	Test, Final Exam
CO4	Prepare a report for an experimental work.	10	C2	-	-	2	Report

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Engagement (hours)
14
28
18
20
20
12
03
02
03
-

Total]	20				
TEACH	TEACHING METHODOLOGY							
Lecture	Lecture and Discussion, Co-operative and Collaborative Method, Experiments.							
TEACH	IING SCH	EDULE						
Week	Lectures	Topics		Assessments				
1	3	Introductory class: Brief of syllabus, basic requirements evaluation system of the cou different section of the laborat different basic equipment	rse, grouping, visit					
2	6	Determination of the specific using meter bridge or determ copper by using copper voltam	ination of ECE of					
3	9	Determination of high resistant deflection and determination galvanometer by half deflection	of resistance of a					
4	12	Determination of the wavelengt a spectrometer using a plane d determination of the specific r polarimeter						
5	15	Determination of the radius of c convex lens by Newton's ring i						
6	18	Determination of the moment wheel about its axis of rotation	•	Quiz, Test, Final Examination,				
7	21	Determination of the thermal c conductor by Lee's method or o specific heat of a liquid by the	determination of	Report				
8	24	Determination of the value of g gravity by means of a compour						
9	27	Determination of the spring commass and the rigidity modulus determination of the Young's m bending method	of the spring or					
10	30	Determination of the frequency of a tuning fork by Melde's experiment or verification of the law of conservation of linear momentum						
11	33	Determination of the Planck's of photoelectric effect or determine length of a concave lens by aux						
12	36	Viva & lab final experimental exam						
13	39	Viva & lab final experimental e	exam					
14	42	Quiz exam						

ASSESSMENT STRA	ASSESSMENT STRATEGY									
Components	Grading	СО	Blooms Taxonomy							
Continuous Assessment (Class performance, Report Writing)	40%	CO1, CO4	C1, C2							
Final Examination										
Lab Test	30%	CO1, CO2, CO3	C1, C2							
Viva	10%	C01, C02, C03	C1, C2							
Quiz	20%									
Total Marks	100%									
REFERENCE BOOK	S									
 Practical Physics: G. L. Squires Practical physics for degree students: Dr Giasuddin and Md. Sahabuddin B.Sc. Practical Physics: C. L Arora Practical Physics: S.L. Gupta and V. Kumar 										

Chemistry Sessional

Spring Semester: Level 1 Term I

COU	JRSE INF	ORMATION	ſ											
Cour	se Code	: CHEM 102	2				Cont	tact H	ours			: 3.0	0	
Cour	se Title	: Chemistry	Sessio	onal			Cred	lit hou	irs			: 1.5	0	
PRE	PRE-REQUISITE													
None	e													
CUR	RICULU	M STRUCTU	JRE											
Outco	ome Base	d Education (C	OBE)											
SYN	OPSIS/R	ATIONALE												
team OBJ • T q • T ti • T v V COU	or individ ECTIVE To familiar uantitative To make s tration etc To develop arious titr URSE CO	ize the student e analysis of m students profic o students' abi imetric method NTENT nemical analys	s with etals cient lity in ls. is in	n expe etc. in ioc n estin the fie	rimen limetr mating	tation ic and g zinc	d iod d iod , ferro ganic a	id and ometri ous co and pl	l base ic ana ontent	neutra Ilysis in w	alizati and o ater s	on, tit compl ample	ration exom e by u as: A	etric sing
		Redox titration							ation,	Com	plexo	metrio	e titra	tion.
		TCOMES AN	-											
No.	COURS				Р	ROG	RAM	ME O	UTC	OMES	S (POs	s)		
	OUTCO	OMES (COs)	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	PO12
1	the diffe paramet acid and neutraliz titration quantita of metal others k	ers regarding l base zation, and tive analysis s etc. and ey words nary standard	V											

2	secondary standard substances, molarity, normality, indicator, equivalent weights and so on. Be able to perform experimentation regarding iodimetric and iodometric method, complexometric titration etc. Be able to measure			~				
3	zinc, ferrous content in water sample by using various titrimetric methods.			\checkmark				
PO4: Envir Comr	Engineering knowledge Investigation, PO5 : Mo conment and sustainabili munication, PO11 : Proje RSE OUTCOMES AN	odern tool u ty, PO8 : Et ect manager	sage, PO6 : hics, PO9 : nent and fi	The eng Individu nance, P	gineer and al and tea	l society, amwork,]	PO7: PO10:	olutions,
No.	Course Outcomes	Corresponding POs	Bloom's	Taxonomy P	A A	К	Assessment Methods	
CO1	Be able to describe the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights	1	C1	-	-	1	Quiz	

CO2	Be able to perform experimentation regarding iodimetric and iodometric method, complexometric titration etc.	5	C5	-	-	6	Test, Final Exam
CO3	Be able to measure zinc, ferrous content in water sample by using various titrimetric methods.	5	C5	-	-	6	Test, Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	14
Practical / Experiment	28
Guided Learning	
Lab Report Preparation	18
Independent Learning	
Preparation of Lab-test	20
Preparation of Quiz	20
Preparation of Viva	12
Assessment	
Continuous Assessment	03
Quiz	02
Final Lab Exam	03

Total				120			
TEACE	IING METHOD	OLOGY					
Lecture	and Discussion, C	Co-operative and Col	laborative Method, Expen	iments			
TEACH	IING SCHEDUI	LE					
Week	Topics			Remarks			
1	Orientation and	Introductory lecture					
2		•	ide (NaOH) Solution wi I ₂ O ₄ .2H ₂ O) Solution	th			
3		of Hydrochloric A h Hydroxide (NaOH)	Acid (HCl) Solution wi	th			
4		of Hydrochloric A n Carbonate (Na ₂ CO	Acid (HCl) Solution wi 3) Solution	th			
5	dihydrate (CaCl	· · · ·	tent in a Calcium Chlorid with Standard Di-Sodiu 2EDTA) Solution.				
6	Mid Term			Examination,			
7	Standardization of Sodium Thiosulphate Pentahydrate (Na2S2O3.5H2O) Solution with Standard Potassium Dichromate (K2Cr2O7) Solution.Report						
8	Pentahydrate (Iodometric Me	CuSO ₄ .5H ₂ O) (Blu	rd Sodium Thiosulpha	ру			
9	Standardization	of Potassium Perma	nganate (KMnO ₄) Solution (C ₂ H ₂ O ₄ .2H ₂ O) Solution				
10	Sulphate (Mohr`		nt in a Ammonium Ferror) ₂ SO ₄ .6H ₂ O] Solution wi KMnO ₄) Solution.				
11	Revision class an	nd final lecture		-			
12	Exam			-			
13	Viva			-			
14	-						
ASSES	SMENT STRAT	EGY					
Co	omponents	Grading	СО	Blooms Taxonomy			
A	ontinuous ssessment	CO1, CO2, CO3	C1, C5				
	performance port Writing						

Final Examination Lab Test Viva Quiz	30% 10% 20%	CO1, CO2, CO3	C1, C5				
Total Marks	100%						
REFERENCE BOOKS		•					
 Practical Physics: G. L. Squires Practical physics for degree students: Dr Giasuddin and Md. Sahabuddin B.Sc. Practical Physics: C. L Arora Practical Physics: S.L. Gupta and V. Kumar 							

5.2 Mathematics

Spring Semester: Level 1 Term I

COURSE INFORMATION								
Course Code Course Title	: MATH 101 : Differential and Integral Calculus	Contact Hours Credit hours	: 3.00 : 3.00					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The purpose of this course is to impact basic knowledge of differential calculus and how to use it in engineering problem.

OBJECTIVE

- Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals.
- Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.
- Calculate the length, area, volume, center of gravity and average value related to engineering study.

COURSE CONTENT

Differential Calculus: Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability, Successive Differentiation, Leibnitz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Lagrange's form of remainder, Cauchy's form of remainder, Expansion of functions differentiation and integration, Indeterminate form, Cartesian differentiation, Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, Curvature, Asymptotes, Partial differentiation.

Integral Calculus: Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its use, Integration as a limit of sum, summing series, Walli's formula, Improper Integrals, beta and gamma function, multiple integral and its application, Area, volume of solid revolution, Area under a plain curve, Area of the region enclosed by two curves, Arc lengths of curves.

Tenge													
COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE PROGRAMME OUTCOMES (POs)												
	OUTCOMES (COs)	1	2	3	4	5	6	7	8	9	10	11	12
	PO1 PO2 PO4 PO5 PO6 PO6 PO1 PO1 PO1 PO1 PO1									Ы			

1	Know the rate of change of a function with respect to independent variables and the different techniques of evaluating indefinite and	\checkmark					
2	definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	\checkmark					
3	Calculate the length, area, volume, center of gravity and average value related to engineering study.	\checkmark					
PO1: PO4: Envir Com	ram Outcomes (PO): Engineering knowledg Investigation, PO5: M conment and sustainabil nunication, PO11: Proj	odern tool us ity, PO8 : Et ect managen	sage, PO6 : T nics, PO9 : In nent and fina	he engin dividual	eer and and tear	society, H mwork, P	PO7: PO10:
No.	RSE OUTCOMES AN Course Outcomes	Corresponding POs	Bloom's Taxonomy		A	K	Assessment Methods
CO1	Know the rate of change of a function with respect to independent variables and the different techniques of evaluating indefinite and definite integrals.	1	C1	-	-	1	Class Test, Assignment, Final Exam
CO2	Apply the concepts or techniques of	1	C3	-	-	1	Class Test, Mid-term, Final Exam

	differentiation and						
	integration to solve						
	the problems						
	related to						
	engineering study.						
CO3	Calculate the length, area, volume, center of gravity and average value related to engineering study.	1	C3	-	-	1	Assignment, Mid-term, Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face to Face Learning	42				
Lecture (3 hours/week x 14 weeks)	42				
Guided Learning					
Tutorial/ Assignments	-				
Independent Learning					
Individual learning	84				
Preparation for tests and examination	21				
Assessment					
Continuous Assessment	2				
Mid Term Examination	1				
Final Examination	3				
Total	153				
TEACHING METHODOLOGY					

LACH	IING SCHEDULE					
Week	Topics	Remarks				
	Introduction to Differential Calculus for Engineering study, Limit of	Class Test,				
	a function and its properties.	Final Exam				
1	Basic limit theorems with proofs, Limit of infinity and infinite limit,					
1	Sandwich (Squeezing) theorem with problems.	_				
	Concept of Differentiation, definition, classification of discontinuity					
	and solving problems	_				
	Basic concept of Differentiability, definition, derivative of a					
	function, differentiable function.	_				
2	Differentiability – one sided derivative (R.H.D and L.H.D), solving					
	problems	_				
	Successive differentiation – Concept and problem solving	_				
	Leibnitz's theorem and its applications	_				
3	Determination of $(y_n)_0$	_				
	Mean Value theorem, Taylor theorem					
	Expansion of finite and infinite forms, Lagrange's and Cauchy's	Class Test,				
4	form of remainder.	Final Exam				
-	Indeterminate forms – concept and problem solving,	_				
	L'Hospital's rules with application					
	Partial differentiation - partial derivatives of a function of two					
	variables and problems					
	Partial differentiation - partial derivatives of a homogeneous					
5	function of two variables, Euler's theorem for two variables and					
5	problems	_				
	Partial differentiation - partial derivatives of a homogeneous					
	function of several variables, Euler's theorem for several (three and					
	m) variables and problem solving	_				
c.	Addition, Polymerization, Alkylation	_				
6	Phase Rule: Basic terms and phase rule derivation	_				
	Phase Diagram of water and carbon dioxide	_				
	maxima and minima of functions of single variables – concept,					
_	Increasing and decreasing function, Concave up and down with					
7	problems	-				
	Curvature	-				
	Asymptotes					
	Introduction to integral calculus	Mid Term				
0	Standard integrals – concept of definite and indefinite integrals,	Examination,				
8	applications.	Final Exam				
	Indefinite integrals – Method of substitution, Techniques of					
	integration	4				
	Indefinite integrals – Integration by parts, Special types of					
0	integration, integration by partial fraction,	4				
9	Integration by the method of successive reduction					

	Definite integ	rals – Reduction for	rmula, Walli's formula					
10								
	Beta function – concept and problem solving							
	Gamma funct	ion - concept and pr	coblem solving		Class Test,			
11			a function, Legendre duplic	cation	Mid Term			
11		lems and application			Examination,			
		grals – double integr			Final Exam			
	Multiple integ	grals – triple integral	ls					
12	Multiple integ variables							
	Area in Cartes	sian						
	Area in polar							
13	Volume of sol	id revolution			•			
	Area under a	plain curve in Carte	sian and polar coordinates					
	Area of a regi coordinates	on enclosed by two	curves in Cartesian and po	lar				
14	Arc lengths of	f curves in Cartesian	n coordinates					
	Arc lengths of	f curves in polar coo	ordinates		•			
ASSES	SMENT STRA	ATEGY						
Compo	nents	Grading	СО	Bloom	s Taxonomy			
Со	ontinuous							
As	ssessment							
· ·	gnments/ CT/	40%	CO1, CO2, CO3		C1, C3			
	Term/ Active							
Class l	Participation)							
			CO1		C1, C3			
Fi	nal Exam	60%	CO2		C3			

REFERENCE BOOKS 1. Howard Anton, Irl C. Bivens, Stephen Davis, Calculus, 12th Edition, Wiley, 2021.

100%

Total Marks

2. Morris Kline, Calculus: An Intuitive and Physical Approach, 2nd Edition, Courier Corporation, 2013.

CO3

C3

Mathematics Fall Semester: Level 1 Term II

COURSE INF	ORMATION		
Course Code Course Title	: MATH 103 : Differential Equations and Matrix	Contact Hours Credit hours	: 3.00 : 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The purpose of this course is to impact basic knowledge to identify and solve differential equations and concept of matrix.

OBJECTIVE

- Be able to impart basic knowledge on ordinary and partial differential equations.
- Developing understanding some of the important aspects of ordinary and partial differential equations.
- Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- Be expert in imparting in depth knowledge on inverse matrix.

COURSE CONTENT

Differential Equations: Introduction & Formulation of DE in Engineering, Degree and order of ODE, solution of first order but higher degree DE by various methods, solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial, linear first order PDE, Non linear first order PDE, Standard form DEs of higher order and wave equation, particular solutions with boundary and initial condition, Non-linear PDE of order one, Charpit's method, Linear PDE with constant coefficients, Applications of DE.

Matrix: Definition of Matrix, different types of matrices, Algebra of Matrices, Transpose and adjoint of a matrix and inverse matrix, rank and elementary transformation, solution of linear equation or System of Linear Equation, Matrix polynomials determination characteristic roots and vectors, characteristic subspace of matrix and Eigen values and Eigen Vectors, Cayley Hamilton.

	Humiton.												
COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs)	POI	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12
1	Define various types of differential equations	\checkmark											

(and the classifications of partial differential													
	equations. Solve ordinary and partial differential equations by using different rules.	\checkmark												
3 1 i	Apply the technique of inverse matrix and echelon form to get the solution of System of Linear Equation.													
PO1: 1 solutio Enviro Comm	am Outcomes (PO): Engineering knowledge, ons, PO4: Investigation, I onment and sustainability nunication, PO11: Projec	PO5: , PO8 t man	Mode 3: Ethi ageme	rn to cs, I ent a	ol us PO9 : nd fir	age, Indi nanc	PO6 vidua	: T l ai	he eng nd tea	ginee mwc	er and ork, P	socie 010:	ety, P	07:
COUL	RSE OUTCOMES AND) GEN	NERI		SILL	5		<u> </u>		-				
No.	Course Outcomes	Corresponding			Bloom's Taxonomv	3	Ь		A		K	Assessment	Menious	
CO1	Define various types of differential equations and the classifications of partial differential equations.	1		(C1, C	2	_		-		3	Assi	s Test gnme l Exai	nt,
CO2	Solve ordinary and partial differential equations by using different rules.	1			C3		-		-		3	Mid	s Test -term, l Exai	
CO3	Apply the technique of inverse matrix and echelon form to get the solution of System of Linear Equation.	1			C3		-		-		3	Assignment, Mid-term, Final Exam		
	ledge Profile (K):		• •				C			1				

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture (3 hours/week x 14 weeks)	42
Guided Learning	
Tutorials/Assignment Preparation	22
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	42
Preparation for test and examination	20
Assessment	
Pop quiz/ Class Test/Mid-Term Examination	03
Final Examination	03
Total	132

TEACHING METHODOLOGY

Lecture, Tutorials, Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Topics	Assessments
	Introduction & Formulation of DE in Eng, Degree and order of ODE	Class Test,
1	Introduction & Formulation of DE in Eng, Degree and order of ODE	Final Exam
	Introduction & Formulation of DE in Eng, Degree and order of ODE	
	Solution of first order but higher degree DE by various methods	
2	Solution of first order but higher degree DE by various methods	
	Solution of first order but higher degree DE by various methods	
	Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs	
3	Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs	
	Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs	

	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	Class Test, Final Exam
4	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	
	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	
	Linear first order PDE, Non-linear first order PDE	
5	Standard form DEs of higher order and wave equation	
	Standard form DEs of higher order and wave equation	
	Particular solutions with boundary and initial condition, Non-linear PDE of order one: Charpit's method	
6	Particular solutions with boundary and initial condition, Non-linear PDE of order one: Charpit's method	
	Particular solutions with boundary and initial condition, Non-linear PDE of order one: Charpit's method	
	Linear PDE with constant coefficients, Applications of DE	
7	Linear PDE with constant coefficients, Applications of DE	
	Linear PDE with constant coefficients, Applications of DE	
	Wave equations	Mid Term
8	Particular solutions with boundary and initial conditions	Examination,
	Particular solutions with boundary and initial conditions	Final Exam
	Second order PDE and classifications to canonical (standard)- parabolic, elliptic, hyperbolic solution by separation of variables,	
9	Second order PDE and classifications to canonical (standard)- parabolic, elliptic, hyperbolic solution by separation of variables,	
	Second order PDE and classifications to canonical (standard)- parabolic, elliptic, hyperbolic solution by separation of variables,	
	Application of OD and PDE in Eng study	
10	Definition of Matrix, different types of matrices, Algebra of Matrices,	
	Transpose and adjoint of a matrix and inverse matrix	
	Solution of linear equation or System of Linear Equation	Class Test,
11	Solution of linear equation or System of Linear Equation	Final Exam
	Solution of linear equation or System of Linear Equation	
	Solution of linear equation using Inverse Matrix	
12	Rank, Nullity and elementary transformation	
	Rank, Nullity and elementary transformation	
	Dependent and independent of vectors	
13	Dependent and independent of vectors with examples	
	Matrix polynomials determination characteristic roots and vectors	
14	Characteristic subspace of matrix and Eigen values and Eigen Vectors,	

Characteristic s Vectors,	subspace of matrix	and Eigen values and	Eigen					
Cayley Hamilton theorem and its application. Finding inverse matrix using this theorem.								
ASSESSMENT STRAT	EGY							
Components	Grading	СО	Blooms Taxonomy					
Continuous Assessment (Assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C1, C2, C3					
		CO1	C1, C2					
Final Exam	60%	CO2	C3					
		CO3	C3					
Total Marks	100%							
REFERENCE BOOKS								
 Howard Anton, Chris Wiley & Sons, 2019 Dr. M.D. Raisinghani 2013 		, Elementary Linear Alge						

Mathematics

Spring Semester: Level 2 Term I

COURSE INFORMATION							
Course Code Course Title	: MATH 201 : Vector Analysis, Laplace Transform and Coordinate Geometry	Contact Hours Credit hours	: 3.00 : 3.00				

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The purpose of this course is to introduce basic knowledge to identify and solve vector mathematical problems, to demonstrate practical applications of Laplace Transform and analyze co-ordinate geometry.

OBJECTIVE

- Be able to impart basic knowledge on ordinary and partial differential equations.
- Developing understanding of some of the important aspects of ordinary and partial differential equations.
- Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- Be expert in imparting in depth knowledge on inverse matrix.

COURSE CONTENT

Vector Analysis: Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors, Gradient of scaler functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and its application, Stoke's theorem and its application, Gauss theorem and its application in Engineering.

Laplace Transform: Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT, Sufficient condition for existence of LT, Inverse LT, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Partial fraction, Solution of DEs by LT, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Application of LT.

Co-ordinate Geometry: Introduction to geometry for Engineering and Rectangular coordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid straight lines, standard equation of coincides, sphere and ellipsoid.

COURSE OUTCOMES AND SKILL MAPPING

N	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
No.	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Know the physical explanation of different vector notation and Laplace transform, inverse Laplace transform, some properties and definition of Geometry.	V											
2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co- ordinate systems.	V											
3	Calculate length, volume and area of objects related to engineering study by using vector.	\checkmark											
4	Apply Laplace transform to ODE and PDEs and the knowledge of geometry specially the pair of straight lines, circles, system of circles, parabola, ellipse etc in engineering study.	V											

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Know the physical explanation of different vector notation and Laplace transform, inverse Laplace transform, some properties and definition of Geometry.	1	C1, C2	_	_	1	Assignment, Class Test, Final Exam
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	1	C2	_	-	1	Class Test, Mid-Term Exam, Final Exam
CO3	Calculate length, volume and area of objects related to engineering study by using vector.	1	C3	-	-	1	Assignment, Mid-Term Exam, Final Exam
CO4	Apply Laplace transform to ODE and PDEs and the knowledge of geometry specially the pair of straight lines, circles, system of circles, parabola, ellipse etc in engineering study.	1	C3	-	-	1	Assignment, Mid-Term Exam, Final Exam
	l Aledge Profile (K): Tatural sciences, K2: Math	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face to Face Learning	42					
Lecture (3 hours/week x 14 weeks)						
Guided Learning						
Tutorial/ Assignments	-					
Independent Learning						
Individual learning	84					
Preparation for tests and examination	21					
Assessment						
Continuous Assessment	2					
Mid Term Examination	1					
Final Examination	3					
Total	153					
TEACHING METHODOLOGY	•					

TEACHING METHODOLOGY

Lecture, Tutorials, Discussion, Problem Based Learning (PBL)

TEAC	TEACHING SCHEDULE								
Week	Topics	Assessments							
	Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation	Class Test, Final Exam							
1	Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation								
	Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation								
2	Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors								
2	Gradient of scaler functions, Divergence and curl of point functions								
	Physical significance of gradient, divergence and curl								

	Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application	
3	Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application	
	Green's theorem and its application	
	Gauss theorem and application in Engineering	Class Test,
4	Stoke's theorem and its application.	Final Exam
	Introduction to geometry for Engineering and Rectangular co- ordinates, Transformation of co-ordinates	
F	Introduction to geometry for Engineering and Rectangular co- ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	
5	Changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	
	Changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	
	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
6	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
7	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
7	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points	
	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points	
8	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points	Mid Term Examination,

system of circles (radical axes, coaxial circles, limiting pointsExamiEquations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting pointsExamiThree-dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane,Exami	nation
system of circles (radical axes, coaxial circles, limiting pointsThree-dimensional co-ordinate system, direction cosines, projections,	
distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
 Three-dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid 	
Three-dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
Three-dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT	
Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT	
Sufficient condition for existence of LT Class T	-
11 LT of derivatives and its application Final I	1xam
LT of Integration with application, LT of sine and cosine integral	
Unit step function and its application	
12 Periodic function with examples, LT of some special function.	
Definition of inverse Laplace Transform and its properties	
Partial fraction and its application in inverse Laplace Transform	
Heaviside formula and its application	

	Convoulution of LT	olication					
	Solve ODE s l	by Laplace transform	1				
14							
	Application o						
ASSES	SSMENT STR	ATEGY					
Components		Grading	СО	Bloom	Blooms Taxonomy		
Continuous Assessment (Assignments/ CT/ Mid Term/ Active Class Participation)		40%	CO1, CO2, CO3		C1, C2, C3		
			CO1		C1, C2		
Fi	nal Exam	60%	CO2		C2		
11	nui LAutti	0070	CO3		C3		
			CO4		C3		
To	otal Marks	100%					
REFE	RENCE BOOI	KS	·	÷			

- 1. Vector Analysis, 2nd Edition 2nd Edition by Murray Spiegel, Seymour Lipschutz, Dennis Spellman
- 2. Schaum's Outline of Laplace Transforms by Murray R. Spiegel
- 3. Engineering Mathematics, Volume Two 2 II: Containing Coordinate Geometry of Two Dimensions, Co-ordinate Geometry of Three Dimensions, Matrices.
- 4. Theory of Equations and Vector Calculus by K. Kandasamy, P.; Thilagavathy, K.; Gunavathy
- 5. A Text Book on Co-ordinate Geometry with Vector Analysis Rahman & Bhattacharjee.

Mathematics

Fall Semester: Level 2 Term II

COURSE INFORMATION									
Course Code Course Title	: MATH 203 : Applied Mathematics for Engineers	Contact Hours Credit hours	: 3.00 : 3.00						

PRE-REQUISITE

MATH 103

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will be introduced to various methods to solve various civil engineering problems dealing with probability and statistics. Students will also be able to apply different methods to solve differential equations.

OBJECTIVE

- To understand the basic concepts of probability distributions, Bayesian inference and relevant statistical methods. These concepts comprise foundational material utilized heavily in later year courses, particularly in water, structural, and geotechnical engineering.
- To formulate civil engineering problems dealing with probability and statistics into mathematical frameworks and solve the resulting models.
- To help the students to solve various differential equations using several methods like power series solution, method of Frobenius etc. Besides that, students will also be able to develop Fourier series for different kind of elements related to civil engineering structures.

COURSE CONTENT

Review of differential equations; power series solution of differential equations and their applications: Frobenius method, Legendre's polynomials, gamma function, Bessel's function; integral form of differential equation and its application to engineering problem solving. Fourier series and its properties, application to engineering problem solving; Fourier integral; Fourier transforms and their uses in solving boundary value problems. Application of statistical methods to engineering problems: Random variables; discrete and continuous probability distributions; functions of random variables and derived distributions; expectation and moments of random variables; point estimation of distribution parameters: methods of moments and maximum likelihood, Bayesian analysis; confidence intervals; hypothesis tests; nonparametric statistical tests; simple and multiple linear regression and model selection; uncertainty and reliability analysis; project level decision making and quality control.

COURSE OUTCOMES AND SKILL MAPPING													
No.	COURSE				PRO	GRAN	MME	OUT	COM	ES (P	Os)		
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012

1	Apply differential equation and Fourier analysis to solve civil											
	engineering problems											
2	Apply probability distribution theory and Bayesian inference to civil											
	engineering problems focusing probability and statistical analysis		V									
3	Develop simple probabilistic models to evaluate uncertainty in civil engineering systems.	\checkmark										
PO1: PO4: Envir	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 											
COU	RSE OUTCOMES	AND	GEN	IERI	C SKI	LLS						
No.	Course Outcomes	Corresponding	S S		Bloom's Taxonomy		Ь	A		K	Assessment Methods	
CO1	Apply differential equation and Fourier analysis to solve civil engineering problems	1		С	3		-	-		3	s Test/C mment/ exam	
CO2	Apply probability distribution theory and Bayesian inference to	2		С	3		-	-		3	s Test/C nment/ exam	

	civil engineering problems focusing probability and statistical analysis						
CO3	Develop simple probabilistic models to evaluate uncertainty in civil engineering systems.	1	C4	-	-	3	Class Test/Class Assignment/Final exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)				
Face to Face Learning					
Lecture (3 hours/week x 14 weeks)	42				
Guided Learning					
Assignment Preparation (3.0 hours/week x 04 weeks)	12				
Independent Learning	48				
Individual learning (1-hour lecture \approx 1-hour learning) Preparation for quiz and final exam	7				
Assessment					
Continuous assessment (Assignment/ Class	08				
Test) Final Exam	03				

	Total	12	20			
TEACH	HING METHODOLOGY					
Lecture	and Discussion, Co-operative and Collab	oorative Method, Problem	Based Learning (PBI			
ГЕАСН	IING SCHEDULE					
Week	Topics		Assessments			
	Background of statistical applications in	n Civil engineering.	Final Exam			
1	Introduction sample space, Venn dia model.					
	Conditional probability, Joint Probabili	ty.	Class Test/Class			
2	Baye's theorem, Bayesian statistics	Assignment/ Final Exam				
-	Probability distribution functions a function.	Mid Term/ Class Assignment/ Final				
	Joint probability mass function, c function, joint probability density funct	- Exam				
3	Continuous random variable function variables, Variance, Co-variance of two					
	Bernoulli Distribution, Binomial distrib	oution				
	Poisson distribution					
4	Moment generating function					
	Uniform distribution					
	Normal Distribution					
5	Standard Normal Distribution					
	Exponential Distribution					
	Central Limit Theorem, Sample mean a	and sample variance				
6	Quality criteria for estimates					
~	Point estimation, method of likelihood interval estimation	Method of moments,	Class Test/Fina Exam			
	Hypothesis testing					
7	Confidence interval					
	Linear Models, linear regression analys					

8	3	Review of d	lifferential equation,	power series solution		Mid Term/ Class Assignment/ Final Exam					
9)	Method of F	Frobenius			Final Exam					
10	0	Legendre Po	olynomial								
1	1	Gamma Function									
12	2	Bessel's Fur	Class Test / Final Exam								
1.	3	Fourier Seri		Class Test/ Final Exam							
14	4	Fourier Trar	nsform		Class Assignment/ Final Exam						
ASS	ESS	SMENT STR	RATEGY								
Con	npor	nents	Grading	СО	Bloo	oms Taxonomy					
_	sign	Test/Class ment/Mid Ferm	40%	CO1, CO2, CO3		C3, C4					
	Fina	ıl Exam	60%	CO1, CO2, CO3		C3, C4					
r.	Tota	l Marks									
REF	REFERENCE BOOKS										
F	 Introduction to Probability and Statistics for Engineers and Scientists – By Sheldon M. Ross. Advanced Engineering Mathematics -Michael D. Greenberg 2nd Edition. 										

5.3 General Education Courses

Bangladesh Studies

Spring Semester: L-1, T-I

COURSE INF	ORMATION		
Course Code Course Title	: GEBS 101 : Bangladesh Studies	Contact Hours Credit hours	: 2.00 : 2.00
PRE-REQUIS	ITE		
None			
CURRICULU	M STRUCTURE		
Outcome Base	d Education (OBE)		
SYNOPSIS/R	ATIONALE		
eventually led economic deve	Bangladesh, and to provide ther to the formation of Bangladesh lopment, legislation, citizen ch ponsible citizen.	and constitution of Banglade	esh, current trends
OBJECTIVE			
 To promote To create a 	l economic developments that le an understanding of the develo an awareness among the studer Bangladesh.	opment of Bangladesh and it	s culture.
COURSE CO	NTENT		
Culture of 2 b. c. Detail Cont Bangladesh Ge	ents: Impact of Geography, His Bangladesh in Engineering App ents: ography: Location, Area, Bour ography of Bangladesh, Maritin	blication ndary, Physiography, River s	
trends in the h and social refo language move mass uprising Constitution of technology, B developments	view of the ancient Bengal, and istory of medieval Bengal, Be form movements, nationalist me ement 1948-1952, education m of 1969, war of independe Bangladesh, Pre and post libera cangladesh's contribution to in Bangladesh (Kaptai Dam, J ad its impact on socio-economic	engal under the East India over overents, division of the In- overent of 1962, six-point nce and emergence of Ba ation development in the field world peace and its see Padma bridge, power plants	Company, religiou adian sub-continent movement of 1966 angladesh in 1971 d of engineering and curity, engineering s, Karnaphuli Rive

Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of

Mille Gove Visio	Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Art and Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations.												
COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE			P	ROGR	AMN	ME O	UTCO	OMES	S (PO	s)		
	OUTCOMES (COs)	PO1	P02	PO3	P04	PO5	P06	PO7	P08	P09	P010	P011	P012
1	Be able to identify	H	I	H	H	I	I	H	I	<u> </u>	H	H	H
2	specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post- colonial periods and variety of cultural identities of Bangladesh. Be proficient to explain the economy and patterns of economic changes throughqualitative												
Prog	and quantitative analysis.												
PO1 solut Envir Com	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 												
No.	Course Outcomes	Corresponding	POS		Bloom's Taxonomy		Ь	A		K	Assessment	Menious	
CO1	Be able to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post- colonial periods and variety	6		С	21, C2		-	-		7	Tern	/Mid n n/Fina	al

	of cultural identities of Bangladesh.						
CO2	Be proficient to explain the economy and patterns of economic changes throughqualitative and quantitative analysis.	6	C2, C4	-	-	7	Class Test/Mid Term Exam/Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture (2 hours/week x 14 weeks)	28
Guided Learning	
Assignment Preparation	-
Independent Learning	
Individual learning	56
Preparation for quiz and final exam	14
Assessment	
Continuous assessment (Assignment/ Class Test)	01
Mid-Term	01
Final Exam	03
Total	103

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACH	TEACHING SCHEDULE								
Week		Тор	ics		Remarks				
1	requiremer Bangladesh	ts of the course, method Geography: Location,	sion on the totalsyllabus ods of assessment of the o , Area, Boundary, Physic ate,Demography of Bang	course. ography,	CT-1				
2	identity of	the Bengali race, main	t Bengal, anthropologica trends in the history of r ne East India Company		C1-1				
3	Religious		ements, Nationalistmove	ments,					
4	Language	movement 1948-1952	, Education movement of	1962					
5	Six-poin Indep								
6		Constitution of	f Bangladesh						
7	Bangladesh's liberat	-	Mid Term Exam						
8	Land, Char biomass, Fi Dam, Padm	(Kaptai							
9	Miner	es							
10	Ba	ngladesh, Economy an	ical and Cultural aspects d national development						
11		OGs), Public Administr	the Millennium, Devel ation in Bangladesh, ernance in Bangladesh	lopment State	CT-2				
12	A	Art and Literature, Trac	litional cultural events						
13	Vision-2	2021, Digitalization, To	ourism and Natural Resou	irces	CT-3				
14	Bar	ngladesh and Internatio	nal Relations, Revisions		C1-3				
ASSESS	MENT STRA	TEGY		-					
Com	ponents	Grading	СО	Bloom	s Taxonomy				
Assign	Class Test/Class Assignment/Mid 40% CO1, CO2 C1, C Term								
Fina	ıl Exam	60%	CO1, CO2	(C2, C4				
Tota	l Marks	100%							

REFERENCE BOOKS

- 1. Bangladesh Studies: Md. Shamsul Kabir Khan and Daulatunnahar Khanam
- Dangladesh Studies. Md. Shahisul Kabi Khan and Daula
 The Constitution of the People's Republic of Bangladesh
 Discovery of Bangladesh: Akbar Ali Khan
 History of Bangladesh, Vols, 1-3: Sirajul Islam
 History of Modern Bengal, Vol, 1: R C Majumdar

Sociology

Fall Semester: Level 1 Term II

basic nature,

scope and perspective of sociology.

COU	URSE INF	ORMATI	ON											
	rse Code rse Title	: GES 101 : Fundame Sociology	entals	of			act Hou t hours					: 2.00 : 2.00		
PRE	-REQUIS	SITE												
None														
CUF	RRICULU	M STRUC	CTUR	E										
Outc	come Based	d Educatior	n (OB	E)										
SYN	OPSIS/R	ATIONAL	Æ											
psyc	This course has been designed to understand the human inter-personal relationship and human psychology in the society and to apply this knowledge in the practical field as an engineer through the study of varied societies and cultures.													
OBJ	ECTIVE													
2. To globa 3. To	o analyze c al contexts	pective of s lifferent cu different so	ltures	and c	viiliz	ation	s, and	societ	al and	d cult	ural i	ssues i	n natic	onal and
COU	URSE CO	NTENT												
b. C S d au V P														
COU	URSE OU'	TCOMES	AND	SKI	LL M	APP	ING							
No.	COURSE					PRO	GRA	MME	OUT	COM	IES (I	POs)		
	OUTCON (COs)	MES	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012
1	Understa	and the										<u> </u>		

 \checkmark

	Apply						
2	sociological-						
	imagination to the			\checkmark			
	context of social problems of BD						
	society						
3	Understand the					 	
C	stages of social						
	research processes						
	and			•			
	methodologies						
4	Analyze different			\checkmark			
	cultures,						
	civilizations, and						
	different social						
	problems and						
	design solutions						
	for those					 	
5	Understand social			\checkmark			
	stratification,						
	different social						
	systems,						
	socialism,						
	capitalism and						
	relate them to BD						
	society						
6	Understand						
	contextual						
	knowledge to						
	assess societal						
	and cultural						
	issues in an						
	environmental						
	-						
Duo	context for sustainable development						

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions,
PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7:
Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10:
Communication, PO11: Project management and finance, PO12: Life-long learning

COUI	RSE OUTCOMES	AND GENER	RIC SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	A	K	Assessment Methods
CO1	Understand the basic nature, scope, and perspectives of sociology	6	C1	-	-	7	Mid Term Exam
CO2	Apply sociological- imagination to the context of social problems of BD society	6	C3	-	-	7	Mid Term Exam
CO3	Understand the stages of social research processes and methodologies	6	C2	_	-	7	Final Exam
CO4	Analyze different cultures, civilizations, and different social problems and design solutions for those	6	C4	-	_	7	Mid Term Exam
CO5	Understand social stratification, different social systems, socialism, capitalism and relate them to BD society	6	C2	-	-	7	Final Exam
CO6	Understand contextual knowledge to assess societal and cultural	6	C2	-	-	7	Final Exam

issues i environ context	mental for		
sustaina	ble		
develop	ment		

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

		-					
Teachir	ng and Learning Activities	Engagement (hours)					
Face to	Face Learning						
Lecture	(2 hours/week x 14 weeks)	38					
Guided	l Learning						
Assign	nent Preparation	-					
Indepe	ndent Learning						
Individ	ual learning	18					
Prepara	tion for quiz and final exam	18					
Assessi	nent						
	ous assessment (Assignment/	02					
Class T	est)	01					
Mid-Te	rm						
Final E	xam	03					
	Total	80					
TEAC	HING METHODOLOGY						
Lecture	s, class performances, assignmen	ts, class tests, final exam					
TEAC	HING SCHEDULE						
Week		Topics	Remarks				
1	Definition, nature and scope of s	sociology, Sociological imagination	CT-1				
μ							

2	Perspectives	of sociology, Orient	ation of sociological theo	ries							
3	Social resear	ch and its process, R	esearch designs and tech	niques							
4	Introducing	culture and its variati	ons, civilization								
5	Defining fan of self	nily and its changes, S	Socialization process and o	development							
6		globalization and a globalization	its impact on human l	life, Factors							
7	Media and it Bangladesh	s impact in modern s	ociety, Addressing social	problems of	Mid Term						
8	Introducing	Introducing social groups and organizations, Introducing bureauc and good governance									
9		verty and its	CT-2								
10	Industrial rev	volution and aftermat	h, Urbanization and city o	development							
11	Capitalism:	influence									
12	Environmen	obal risk									
13	Population of brief analysi	l deviance: a	CT-3								
14	Review										
ASSES	SSMENT STI	RATEGY									
Con	nponents	Grading	СО	Blooms	Taxonomy						
Assig	Test/Class nment/Mid Term	40%	CO1, CO2, CO3, CO4, CO5								
Fin	al Exam	60%	CO1, CO2, CO3, CO4, CO5, CO6	C1, C	2, C3, C4						
Tot	Total Marks 100%										
REFE	RENCE BOC	OKS									
 Soc Ant 		ary Principles: by CN	chaefer, 2nd edition, 201 I Shankar Rao	3							

Principles of Accounting

Spring Semester: Level 2 Term I

COU	URSE INF	ORMATION					1							
	rse Code	: GEA 201						tact H				: 2.0		
Cou	rse Title	: Principles of	Acco	ountin	ıg		Crec	lit hou	urs			: 2.0	0	
PRE	E-REQUIS	SITE												
None	e													
CUF	RRICULU	M STRUCTU	RE											
Outc	come Based	d Education (Ol	BE)											
SYN	OPSIS/R	ATIONALE												
		f this course is marizing and re			as ar	intro	ductio	on to	basic	s of a	iccou	nting,	anal	ysis,
OBJ	ECTIVE													
F I I I I I I I I I I I I I	Financial P Develop a ncluding c Develop the ncluding A Process cos URSE CO Dunting in ment; Fina porption cos n Decision	Action; Reco ancial Statemen ting and Variab -Making in Acc	ent of e und n and o appl ing an ant Co rding nt An e cos counti	Com dersta cost y cos nd Va osting Proo alysis sting; ng.	prehe anding behav t acco ariable g. cess; s; Cor Job C	nsive l g of c ior. unting e costi Adjus mputer Order C	tools ng, C ting t	to ma VP A he A	tementing tike intradictional tike intradictional tintradictional tike intradictional tike intradictional	nt of C princ forme is, Jol nts an g Syst	Chang iples d bus b Orc d pr d pr tem;	epare Cost	Equit conce decisi osting finar Conce	y. epts, ons, and ncial epts;
COU	URSE OU'	TCOMES ANI	D SK	ILL]	MAP	PING								
					P	ROGE	RAMN	ME O	UTCO	OMES	G (PO	s)		
No.	COURSE OUTCO	E MES (COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
1		ntal principles ial and cost												
2		and financial and analysis												

	Understand cost							
3	behavior and cost						\checkmark	
	control							
	Apply cost accounting							
	tools for making						./	
4	informed business						N	
	decisions							

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions,
PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7:
Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10:
Communication, PO11: Project management and finance, PO12: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

COUL	SE OUTCOMES AND	D GENERIC SI	NILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	A	K	Assessment Methods
CO1	Understand the fundamental principles of financial and cost accounting	11	C2	-	-	1	Assignment, Final Exam
CO2	Understand financial reporting and analysis	11	C2	-	-	1	Mid- Term, Final Exam
CO3	Understand cost behavior and cost control	11	C2	-	-	1	Mid- Term, Final Exam
CO4	Apply cost accounting tools for making informed business decisions	11	C3	-	-	1	Assignment, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

society a	ge of resources, A2 : Level of interactions, A3 : and the environment, A5 : Familiarity	Innovation, A4: Conseque	nces to			
	s Taxonomy Levels: nember, C2: Understand, C3: Apply, C4: Analy	vze C5 : Evaluate C6 : Cre	ate			
	IING LEARNING STRATEGY	<i>(20, 00, 1)</i>				
Teaching	g and Learning Activities	Engagement (ho	urs)			
Face to	Face Learning					
Lecture	(2 hours/week x 14 weeks)	28				
Guided	Learning					
Assignm	nent Preparation	10				
Indepen	ident Learning					
Individu	dividual learning 24					
Preparat	ion for quiz and final exam	13				
Assessm	ient					
	Continuous assessment (Assignment/ Class Test) 01					
Mid-Ter		01 03				
Final Ex						
	Total	80				
ТЕАСН	IING METHODOLOGY					
Lecture	and Discussion					
TEACH	IING SCHEDULE		1			
Week	Topics		Remarks			
	Meaning, history and definition of accounting					
1	The users and uses of accounting.		Class Test,			
	Ethics in financial reporting		Final Exam			
2	The cost principle, monetary unit assumption assumption	and the economic entity				
3	Accounting equation and its components					
3	The effects of business transactions on the acc	counting equation.	Class Test, Final Exam			
Four financial statements and how they are prepared.						
4	Journal					
	Journal					
5	T-account, Ledger, Trial balance		Mid Term,			
	Adjusting Accounts		Final Exam			
6	Worksheet.					

	Completion of	the Accounting cycl	le.								
7	Financial State	ment Analysis									
	Managerial Acc	counting Basics									
8	Cost Concepts										
9	Job Order Cost	Accounting			Class Test.						
10	Process Cost A	ccounting			Final Exam						
11	Cost-Volume-Profit Relationships										
12	Performance		1								
13	Incremental An										
14	Capital Budget	ing									
ASSES	SMENT STRAT	TEGY			· · · · · ·						
Co	omponents	Grading	СО	Bloom	s Taxonomy						
	ss Test/Class ment/Mid Term	40%	CO1, CO2, CO3	C2	2, C2, C3						
F	inal Exam	60%	CO1, CO2, CO3, CO4	C2	2, C2, C3						
То	otal Marks	100%									
REFE	RENCE BOOKS										
		· •	eygand, Kimmel & Kieso (2 280 & Kimmel (IFRS Latest	,							

Engineering Economics

Spring Semester L-2, T-I

COURSE INFORMATION

Course Code	: GEE 201	Contact Hours	: 2:00
Course Title	: Engineering Economics	Credit Hours	: 2:00

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basic theories of economics in critical thinking and problem solving. To introduce the students to identify the basic features of economic development and regarding planning for the economy of the country.

OBJECTIVE

- To help students demonstrate the knowledge of the fundamental concepts of economics.
- To teach how efficiency in organizational decision-making can be achieved.
- To help students understand consumer behavior, elasticity of market demand and different market structure.
- To help students realize the importance of various macroeconomic aggregates such as national income, full employment, unemployment, inflation, productivity and the major challenges associated with the measurement of these aggregates.
- To help students apply the basic theories of economics to make their project management costeffective.
- To help students recognize the basic features of economic development and regarding planning for the economy of the country.

COURSE CONTENT

Γ	Main Contents	Detail Contents	
	Short History of the Evolution of Economics Thought	Definition of economics in various predominant schools economics.	of
	Consumer Theory	 Definition of Utility Law of diminishing marginal utility. Indifference Curve & MRS Budget Line & Relative price Consumer Equilibrium 	
	Theory of Production	Short-run VS Long-run production functionStages of production in one-variable input production	

	Long-run production curve.
Production Possibility Frontier	• PPF Curve.
	• Applying the PPF to Society's Choices by the Engineers
	• Definition.
Demand & Supply	• Law of Demand.
	Law of Supply
	• Movement along the curve & Shift
	Equilibrium analysis
	• Different types of elasticity.
Elasticity of Demand	• Different types of price elasticity.
	• Relation between AR, MR and elasticity Mathematic
	Analysis
Cost Analysis	• Determining, Average Cost (AC), Marginal Cost (MC)
	from Total Cost (TC)
	Depreciation & Break-even point
	Short-run cost analysis
	Long-run cost analysis
Analysis of Market Structure	Perfectly Competitive Market
	 Monopoly and Monopolistic Market
	Oligopoly (Cournot model & Stackelberg model)
National Income	• Definition of GDP, GNP, NNP, NI
	• Three approaches GDP calculation.
	Shortcoming of GDP calculation.
Circular Flow of National Income	• Three sector Economy (Closed Economy)
	• Four Sector Economy (Open Economy)
Inflation	Inflation measuring indices
	• Calculation of GDP deflator & CPI
	Demand-Pull and Cost-Push Inflation
Money	History of Money
	Functions of Money
	Fractional Reserve Banking
Monetary policy	Analysis of Financial Market
	Monetary Policy Instruments
Fiscal Policy	Taxation Structures
5	Government Spending Multiplier
	• Tax Multiplier
	Income Tax Calculation
Exchange rate	Definition & Calculation
	• How exchange rate impacts import & exports
	 Balance of Payment
Unemployment	• Definition of terms related to unemployment.
	• Calculation of unemployment rate.

	• Four									yme	nt.		
	• Keyn	es Fi	ull E	Emp	loyr	nen	t Th	leor	у				
	• Analy	ysis	of l	aboı	: ma	arke	t th	roug	gh v	vario	ous u	nemp	loym
	theor	ies.											
Enginee	ring Economics • Defin	itior	1										
	-	Single Payment factor											
	• Singl						nflat	tion	& 7	[ax	Adju	sted)	
	• Unife												
	• Gradi												
Industria	al Economics • Econ												
		• Economics of union: Bargaining theories											
OUDGI	of wa E OUTCOME AND SKILL MAPPING	<u> </u>											
JUUKSI	2 OUTCOME AND SKILL MAPPING	r											
				PR	OG]	RAI	M O	DUT	CO]	ME	S (PC	Ds)	
Industria	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	0	[]	2
		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	bold Pol2
	Be able to understand the basic												
1	concepts and principles of												
	microeconomics & macroeconomics.												
	Be able to apply the basics of												
2	economics in optimization of a firm's												
	decision.												
	Be able to apply the concepts of consumer behaviour, production												
2	consumer behaviour, production process, cost of production and market												
3	structure to find the equilibrium that											N	
	maximizes the welfare of the society.												
	maximizes the wentare of the society.												
	Be able to interpret the reasoning												
	behind the economic policies of the											,	
	government to develop the domestic												
4													
4	economy as well as the relationship with the global economy.												

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES & GENERIC SKILLS												
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	ď	A	К	Assessment Methods					
1	Be able to understand the basic concepts and principles of microeconomics and macroeconomics	1	C1	-	-	1	Mid Term, Final Exam					
2	Be able to apply the basics of economics in optimization of a firm's decision.	1	C2	_	_	1	Mid Term, Final Exam					
3	Be able to apply the concepts of consumer behavior, production process, cost of production and market structure to find the equilibrium that maximizes the welfare of the society.	11	C3	-	-	2	Mid Term, Final Exam					
4	Be able to interpret the reasoning behind the economic policies of the government to develop the domestic economy as well as the relationship with the global economy.	11	C2		-	2	Mid Term, Final Exam					

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
	28
Self-Directed Learning	75
Formal Assessment	5.5
Total	108.5
TEACHING METHODOLOGY	

Class Lecture, Pop quiz, Case study, Problem solving

COURSE SCHEDULE

Week	Topics	Assessments
1-4	Short History of the Evolution of Economics Thought, Importance of Economics in Engineering, National Income, Circular Flow of National Income, Consumer theory, Inflation, Money, Theory of Production, Monetary policy.	CT-1
5-7	Theory of Production, Fiscal Policy, Production Possibility Frontier, Demand & Supply, Exchange rate.	

8-9	Demand & Supply, Elasticity of Demand, Unemployment		
10-12	Elasticity of Demand, Cost Analysis, Engineering Economics, Analysis of Market Structure	CT-2	
13	Analysis of Market Structure		
14	Industrial Economics	MID	

ASSESSMENT STRATEGY

Components	Grading	СО	Bloom's Taxonomy		
Continuous Assessment (Class Assignments/ Class Test/ Mid Term/)	40%	CO1, CO2, CO3, CO4	C1, C2, C3		
Final Examination	60%	CO1, CO2, CO3, CO4	C1, C2, C3		
Total Marks	100%				

REFERENCE BOOKS

- 1. Schaum's Outline of Microeconomics McGraw-Hill by Dominick Salvatore (4rth Ed.)
- 2. Principle of Economics by N. Gregory Mankiw (8th Ed.)
- 3. Microeconomics by Robert S. Pindyck and Daniel L. Rubinfeld (8th Ed.)
- 4. Introduction to Macroeconomics with Applications to Bangladesh Economy by Kazi Iqbal & Amin Bin Hasib
- 5. Schaum's Outline of Macroeconomics McGraw-Hill by Eugene A. Diulio (3rd Ed.)

Leadership and Management

Fall Semester: Level 1 Term II

COURSE INFORMATION							
Course Code	: GELM 175	Contact Hours	: 2.00				
Course Title	: Leadership and Management	Credit hours	: 2.00				
PRE-REQUIS	PRE-REQUISITE						

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course is designed to make students understand the overlapping connection between engineering and management in an organization through the study of varied management practices and leadership traits as an engineer.

OBJECTIVE

- To introduce different management functions and approaches.
- To expose students to different views and styles of leadership.
- To understand how an organization functions collaboratively with managers and engineers.
- To understand various personality traits and its impact on leadership and management to solve real-world management problems as an engineer.

COURSE CONTENT

a. Main Contents: Introduction to Leadership and Management, Management Fundamentals, Leadership & Motivation, Organizational Management, Planning and goal setting, Control, Change and Innovation, Attitude, Personality, Perception and Individual Decision Making, Understanding

Work Team, HR Management, Operations Management, Information Technology and Management, Case studies.

b. Detailed Contents: Introduction to Leadership and Management: Definition of leadership and management, basic difference between a leader and a manager, relation of leaders and managers with respect to efficiency and effectiveness, qualities of leader and managers with examples from history.

Management Fundamentals: Definition of management & manager, levels of management, management functions and skills, Mintzberg's managerial roles, Henri Fayol's management principles, strategic management.

Leadership & Motivation: Motivation, Maslow's hierarchy needs, theory of X & Y, motivators and hygiene factors, goal setting theory, reinforcement theory, equity theory, expectancy theory, Leadership styles, leadership trait theory, managerial grid, contemporary leadership, conflicts negotiation, leadership issues in 21st century, cross cultural leadership, engineer as a leader and some simple case discussions on leadership (positive and toxic leadership) in the class (Interactive Learning).

Organizational Management: Organization, departmentalization, chain of command, unity of command, cross functional area, authority, centralization and decentralization, traditional &

contemporary organization, matrix project structure, learning structure, organizing collaboration. Planning and goal setting: Foundation of planning, goals of plan, types of goal, types of goal & plan, goal setting, MBO, well written goal.

Control: Controlling process, controlling for organizational performance, types of control: (feed-forward, feedback & concurrent), balanced scorecard, contemporary issues in control, workplace concern & workplace violence.

Change and Innovation: Change and innovation, internal and external for change, changing process, creativity vs innovation. Attitude: Components of Attitude, behavior model and characteristics model, behavior vs. attitude, job attitude, job involvement, job satisfaction and customer satisfaction.

Personality: Personality determinants: heredity and environment, Myers-Briggs Type Indicator, Big five personality model, personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).

Perception and Individual Decision Making: Factors influencing perception, attribution theory, errors/biases in attribution, Factors of individual decision making, rational decision making, bounded rationality, satisfice, common errors in decision making, creativity in decision making.

Understanding Work Team: Work group, work team, problem solving team, selfmanaged work team, cross functional team, virtual team, team effectiveness, team challenges.

HR Management: Process of Human Resource Planning, forecasting demand for labor, staffing, internal supply of labor, performance appraisal.

Operations Management: Project managing basics, goals and boundary of project,WBS, scheduling a project, Demand and supply forecasting, inventory control.Information

Technology and Management: Management Information System (MIS), Enterprise Resource Planning (ERP) - For introductory knowledge.

COU	JRSE OUTCOMES AN	D SK	ILL	MAF	PPING								
No.	COURSE OUTCOMES (COs)			Р	ROGR	AMN	/IE O	UTCO	OMES	S (PO	s)		
	OUTCOMES (COS)	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	60d	PO10	P011	PO12
1	Understand the fundamental concepts of leadership and management skills												
2	Apply the role and contribution of a leader in achieving organizational goals.									\checkmark			

3	Understand the							
	contribution of							
	leadership traits and							
	management skills in					\checkmark		
	decision							
	making and solving							
	real life problems.							
Pro	gram Outcomes (PO).							

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

0001							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Р	A	K	Assessment Methods
	Understand the						
CO1	fundamental concepts of leadershipand management skills	9	C2	-	-	1	Final Exam
CO2	Apply the role and contribution of a leader inachieving organizational goals.	9	C3	-	-	1	Mid Term Exam, Final Exam
CO3	Understand the contribution of leadership traits and management skills in decision making and solving real life problems.	9	C2	-	-	1	Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex	Engineering Activities (A):					
-	of resources, A2: Level of interactions, A	3: Innovation, A4: Consequer	nces to			
•	d the environment, A5: Familiarity					
	Caxonomy Levels:					
	mber, C2: Understand, C3: Apply, C4: An	alyze, C5 : Evaluate, C6 : Crea	ate			
TEACHI	NG LEARNING STRATEGY	Γ				
Teaching a	and Learning Activities	Engagement (hou	rs)			
Face to Fa	ace Learning					
Lecture (2	hours/week x 14 weeks)	28				
Guided L	earning					
Assignme	nt Preparation	-				
Independ	ent Learning					
Individual	e	24				
Preparation	n for quiz and final exam	14				
Assessmen	nt					
	s assessment (Assignment/ Class Test)	01				
Mid-Term			01			
Final Exar		03				
	Total	103				
TEACHI	NG METHODOLOGY					
Lecture an	d Discussion					
TEACHI	NG SCHEDULE					
Week	Topics		Remarks			
1	Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history.					
	Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management.					
2	Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory					
3	Leadership: Leadership styles; leadersh grid; contemporary leadership; confli issues in 21st century; cross cultural lead and some simple case discussions on le leadership) in the class (Interactive Learn	cts negotiation; leadership lership; engineer as a leader adership (positive and toxic				

4	Case Study – I: Engineer as Great Leaders	
5	Organizational Management: Organization; departmentalization; chain of command; unity of command; cross functional area; authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration.Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal.	
6	Control:Controllingprocess;controllingfororganizationalperformance;typesofcontrol:(feed-forward,feedback &concurrent);balancedscorecard;contemporaryissuesincontrol;workplaceconcern & workplaceviolence.ChangeandInnovation:Changeand externalforchange;changingprocess;creativityvsinnovation.	
7	Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.	1
8	 Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality). Perception and Individual Decision Making: Factors influencing 	Mid Term/ Project
9	 perception; attribution theory; errors/biases in attribution Perception and Individual Decision Making: Factors of individual decision making; rational decision making; bounded rationality; satisfice; common errors in decision making; creativity in decision making. Case Study – III: A Case on Decision Making – Involves both leadership and managerial skills (Interactive Discussion in the Class) 	
10	Understanding Work Team: Work group; work team; problemsolving team; self-managed work team; cross functional team; virtualteam; team effectiveness; team challenges.HR Management: Process of Human Resource Planning; forecastingdemand for labor; staffing.	CT 2
11	HR Management: Internal supply of labor; performance appraisal.OperationsManagement: Project managing basics; goals and	
12	boundary of project; WBS; scheduling a project.Operations Management: Demand and supply forecasting; inventory control.Exercise – Use of Microsoft Project (MSP) for scheduling a project at student level	
13	at student levelCase Study – IV: A case that covers all relevant theories taught throughout the course and involves both leadership and management	

Information Technology and Management: Management InformationSystem (MIS); Enterprise Resource Planning (ERP) - Forintroductory knowledge.

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Class Test/Class Assignment/Mid Term	40%	CO1, CO2, CO3	C2, C3
Final Exam	60%	CO1, CO2, CO3	C2, C3
Total Marks	100%		
REFERENCE BOOK	S		

1. Engineering Management (Revised Edition) – A.K. Gupta.

- 2. Industrial Engineering and Production Management Martand T. Telsang.
- Leadership in Organizations Gary Yukl.
 Developing Management Skills David A. Whetten and Kim S. Cameron.

Sustainability of Development Projects

Spring Semester L-3, T-I

COURSE INFORMATION								
Course Code Course Title	: GESP 303 : Sustainability of Development Projects	Contact Hours Credit hours	: 2 hrs/week : 2.00					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will learn the different aspects associated with development projects, social and environmental sustainability, development index, planning and policy towards development in Bangladesh, and socio-economic impact assessment approach.

OBJECTIVE

- Gain a fundamental understanding of the concepts of socio-economic aspects of development projects.
- Learn fundamental principles of environment and sustainable development, sustainable development goals (SDGs), development and economic growth, socio-economic indicators, and development index.
- Understand the concepts of human-interest related aspects, population displacement, resettlement and rehabilitation strategy, socio-economic impact assessment approach.
- Gather knowledge on planning and policies regarding development processes in Bangladesh.

COURSE CONTENT

Environment and sustainable development; sustainable development goals (SDGs); economics and social structure; development and economic growth; socio-economic indicators; concept of human development, human development index; gender related human development index; human poverty and human poverty index; poverty reduction strategies in Bangladesh.

Socio-economic aspects of development projects; human interest related aspects; land use, land acquisition policy in Bangladesh; planning processes in Bangladesh; responsibilities in overall socio-economic development in Bangladesh; population displacement; resettlement and rehabilitation strategy; inequalities in distribution of benefits and losses; community participation in development project.

Socio-economic impact assessment approach (both Bangladesh and international standard); socio-economic survey; case studies.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
		POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012

1	Demonstrate various	5									
	socio-economic										
	indicators of										
	developments with				`						
	reference to										
	Bangladesh.										
2	Comprehend the										
	concept of										
	sustainable										
	development, SDG,										
	and interpret the										
	uniqueness of										
	development project										
	in different economi	c									
	and social structure.										
3	Identify focal										
	socioeconomic and										
	environmental issue	S									
	and dimensions										
	related to										
	development										
	projects and evaluate	e									
	their impact on										
	society.										
Prog	ram Outcomes (PO):										
	Engineering knowled										
	Investigation, PO5: N										
	ustainability, PO8 : Etl					PO1(): Con	nmun	icatior	1, PO 1	11:
Proje	ct management and fin	nance, PO1	2: Life-lon	g learnin	g						
COU	RSE OUTCOMES A	ND GENH	ERIC SKII	LLS							
		Corresponding POs	>							Jt	
		ipu ,	Bloom's Taxonomy							Assessment Methods	
No.	Course Outcomes	spor	onc	Ъ	V		\mathbf{N}			ssr thc	
		FILES	Blc							Me	
		ō									
	Demonstrate										
	various socio-										
	economic								~1	-	
CO1	indicators of	PO6	C2			4,	5		Class '		
	developments with								Assign		
	reference to								Mid-te	erm, F	inal
											mai
	Bangladesh.								Exam		mai
	Bangladesh.								Exam		IIIaI
	Bangladesh. Comprehend the	D 07		1.2.2			(Exam		mai
CO2	Bangladesh.	PO7	C3	1,2,3		5,	6		Exam		11141

	SDG, and interpret the uniqueness of development projects in different economic and social structure.					
CO3	Identify focal socioeconomic and environmental issues and dimensions related to development projects and evaluate their impact on society.	PO6	C5		6,7	

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	10
Independent Learning	
Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	22 15
Assessment	
Continuous Assessment	2
Final examination	3

Total			80						
TEACH	HING MET	HODOLOGY							
Lecture	and Discuss	sion, Co-operative and Collaborative N	/lethod, Problem B	ased Learning (PBL)					
TEACH	IING SCH	EDULE							
Week	Lectures	Topics		Assessments					
1	1	Introduction, Economic and Social st	ructure	CT/Assignment/					
1	2	Development Concept		Mid Term/Final Exam					
2	3	Introduction, Economic and Social st	ructure						
2	4	Development Indicator							
2	5	Development Project							
3	6	Development Indicator							
4	7	7 th Five year Plan							
4	8	Sustainable Development							
-	9	Resettlement issue	•						
5	10	Sustainable Development							
(11	Resettlement issue	CT/Assignment/						
6	12	Millennium Development Goals (MI	Mid Term/Final Exam						
7	13	Community Participation	Community Participation						
7	14	Millennium Development Goals (MI	DGs)						
	15	WSS issue							
8	16	Millennium Development Goals (MI Bangladesh	OGs) and						
	17	Impact of project							
9	18	Millennium Development Goals (MI Bangladesh	OGs) and	-					
10	19	Impact of project							
10	20	Sustainable Development Goals (SD	Gs)]					
	21	Quality of Life]					
11	22	Sustainable Development Goals (SD Bangladesh	Gs) and Status of						
10	23	SIA Variable		CT/Assignment/					
12	24	SDGs and Important Targets		Mid Term/Final Exam					
13	25								

	26	Bangladesh's Soc	angladesh's Socioeconomic Success							
14	27	Case Study and F	se Study and Revision							
14	28	Revision								
ASSES	SMENT ST	FRATEGY								
Compo	nents	Grading	СО	Blooms Taxonomy						
Continu Assessn (Class a CT/ Mic Active (Particip	nent ssignments 1 Term/ Class	/ 40%	CO1, CO2, CO3	C2, C3, C5						
Final E	xam	60%	CO1, CO2, CO3	C2, C3, C5						
Total M	arks	100%	CO1, CO2, CO3	C2, C3, C5						
REFER	RENCE BO	OKS								

1. Project Planning and Control' by Lester

2. 'Project Management Techniques' by A.O. Awani

3. Vanclay (2015) Social Impact Assessment – Guidance for Assessing and Managing the impacts of Projects, International Association for Impact Assessment

5. Salim Momtaz, "Social Impact Assessment in Bangladesh: A Critical Review of the Recent Developments".

^{4.} Development Project Proforma/Proposal (DPP) Manual (Parts 1 and 2), General Economics Division (GED), Planning Commission, Ministry of Planning, Government of the People's Republic of Bangladesh, March 2014

Project Planning and Construction Management

Fall Semester: L-4, T-II

COURSE INFORMATION								
	EPM 401 roject Planning and nstruction Management	Contact HoursCredit hours	: 3.00 : 3.00					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides knowledge on principles of project management, human resource management, project planning. It is design to develop skills to perform project scheduling, project appraisals, resource allocation by operation research technique which will be useful in in their professional life.

OBJECTIVE

- To gain knowledge on principles of project management & organizations, conflict management, human resource management, inventory management, demand forecasting and construction site management
- To develop skills for evaluating a project based on BCR, NPV, IRR, PBP
- To execute allocation of resources by linear programming and plan a project by network techniques and project management software

COURSE CONTENT

Project Planning: project planning and evaluation; Planning and scheduling, PERT, CPM; resource scheduling; Project management software; linear programming and application; feasibility reports

Construction Management: Principles of management; Construction management: principles, project organization, methods and practices, technology, management of materials and equipment, site management, contracts and specifications, inspection and quality control, safety, economy. Conflict management; Psychology in administration: human factors in management; human resource management. Demand forecasting; inventory control; stores management; procurement; legal issues in construction.

Time value of money, cash flows, payback period, net present value, internal rate of return, fisher's rate of intersection, benefit-cost ratio, cost-benefit analysis case studies.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE			Р	ROG	RAM	IME C	UTC	OME	S (PC	Ds)		
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	909	PO10	PO11	PO12
1	Explain the principles of project management & organizations, human resource management, inventory management, demandforecasting and construction site management	V											
2	Plan a projectschedule by network techniques and projectmanagement softwareand execute allocationof resources by linear programming			V									
3	Apprise a project based on BCR, NPV, IRR, PBP.												
PO1 PO4 Envi	ram Outcomes (PO): Engineering knowledge, Investigation, PO5: Mod ronment and sustainability munication, PO11: Projec	ern to , PO	ool us 8 : Eth	age, nics, l	PO6: PO9:	The Indiv	engine idual a	er and and te	l soci amwo	ety, I ork, P	PO7 : PO10 :		ons,
	JRSE OUTCOMES AND						,			2			
No.	Course Outcomes	Corresponding	POs		Bloom's Tavonomy	(monova i	Ρ	A		K		Assessment Methods	
CO1	Explain the principles of project management & organizations, human resource management, inventory management, demand forecasting and construction site management	1	l	3			-	-	3		Assi Mid Pop	s Test gnme -term, quiz, l Exai	nt,

CO2	Plan a project schedule by network techniques and projectmanagement software and execute allocationof resources by linear programming	3	4	-	-	4	Class Test, Assignment, Mid-term, Pop quiz, Final Exam
CO3	Apprise aproject based on BCR, NPV, IRR, PBP	4	5	-	-	4	Class Test, Assignment, Mid-term, Pop quiz, Final Exam

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create TEACHING LEARNING STRATEGY

Engagement (hours)
42
15
36
22
2
3
120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning(PBL)

	NG SCHEDULE	
Week	¥	Assessments
1		CT/
-		Assignment
2		
2		
3		
5	Project Organization: Methods and Practices, Technology	
	Project Team	
	PBP, NPB	CT/
4		Assignment
	Motivation	
	BCR, IRR	
5 Project Communication Management of Materials and E	Project Communication	
	Management of Materials and Equipment	
	Project planning, WBS, network technique	Mid Term/
6	Site Management	Assignment
	Contracts and Specifications	
	CPM, Project Planning software	
7	 6 Site Management Contracts and Specifications CPM, Project Planning software Illustrative example with CPM, Project Planning software Inspection and Quality Control 	
	Inspection and Quality Control	
	PERT	
8	Illustrative example with PERT	
	Safety	
	Crashing and network to find the optimum duration	
9	PBP, NPB Project Leadership Motivation BCR, IRR Project Communication Management of Materials and Equipment Project planning, WBS, network technique Site Management Contracts and Specifications CPM, Project Planning software Illustrative example with CPM, Project Planning software Inspection and Quality Control PERT Illustrative example with PERT Safety Crashing and network to find the optimum duration Illustrative example for crashing a network Economy Introduction to Linear Programing, formulation of objectivefunction, constraint equations Graphical solution of linear programming Project Risk management Illustrative examples of graphical methods Illustrative examples of graphical methods Project Risk management Inventory management	
	Economy	
	Introduction to Linear Programing, formulation of	
	objectivefunction, constraint equations	
10	Graphical solution of linear programming	
	Project Risk management	
	Illustrative examples of graphical methods	
11	Illustrative examples of graphical methods	
10		CT/
12	EOQ	Assignment

	Conflict Management										
13	Demand Fore	Demand Forecasting									
	Methods of D	Methods of Demand Forecasting									
	Psychology in	Psychology in Administration									
	Construction	safety, ethics, proc	curement								
14	Human Factor	rs in Management									
	Human Resou	rce Management									
ASSESSM	ENT STRATEO	βY									
Componen	its	Grading	СО	Blooms	Taxonomy						
Continuous Assessment (Class assignments/ CT/ Mid Term/ ActiveClass Participation)		40%	CO1, CO2, CO3	3,4,5							
			CO 1	3							
Final Exan	1	60%	CO 2	CO 2 4							
			CO 3	5							
Total Mark	s	100%									
REFEREN	ICE BOOKS										
 The Pro Introduce Project 	ction to Operation Management Tec	nent" by – Willian nal Research by – chniques by – A.O	Hiller &Liberman								

- Froject Management Techniques by Theo.
 Construction Planning, Equipment and Methods by Peurifoy
 Material Management & Inventory Control by A.K. Datta
 Project Management by S. Chowdhury

COURSE INFORMATION								
Course CodeCourse Title	: GERM 352 : Fundamentals of Research Methodology	Contact HoursCredit Hours	: 2.00 : 1.00					
DDE DEQUISITE								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The Fundamentals of Research Methodology is a hands-on course designed to impart education in the foundational methods and techniques of academic research in Science and Engineering context. UG students would examine and be practically exposed to the main components of a research framework i.e., problem definition, research design, data collection, ethical issues in research, time management, report writing, and presentation. Once equipped with this knowledge, participants would be well-placed to conduct disciplined research under supervision an area of their choosing. In addition to their application in an academic setting, many of themethodologies discussed in this course would be similar to those deployed in professional research environments.

OBJECTIVES

- To evaluate/review related extant literature, form a variety of sources, pertinent to theresearch objectives/questions.
- To expose students to various research methodologies (design), relevant to the researchproblem needing to be addressed.
- To explain and justify how researchers will collect and analyze research data.
- To educate students in the common mistakes, research misconduct, and ethical considerations in the field of research methodology.

COURSE CONTENT

Foundations of Research, Problem Identification and Formulation, Research Design, Data Analysis, Research Misconduct and Ethics, Use of Tools/Techniques for Research, Timemanagement skills and developing Gantt Chart for proper planning and execution of research work.

COURSE OUTCOMES AND SKILL MAPPING													
No.		PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	60d	PO10	P011	P012
1	Understand the research fundamentals and formulate problem statement and research questions/objectives.		\checkmark										

2	Formulate and Image: Constraint of the second sec	
	compose a Research	
	proposal considering	
	research activities,	
	background studies, and	
	following standard	
	guidelines.	
3	Develop writing and	
	presentation skill, and	
	demonstrate ethical	
	considerations in	
	conducting research.	

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	A	K	Assessment Methods
C01	Understand theresearch fundamentalsand formulate problem statement and research questions/objectives.	2	C2	-		4,6	Assignment, Class Test
CO2	Formulate and compose a researchproposal considering research activities/design, background studies, and followingstandard guidelines.	12	C3	-		4,7,8	Report, Project, Assignment, Class Test
CO3	Develop writing and presentation skill, and demonstrate ethical considerations inconducting research.	10	C3	-		3	Report, Project, Assignment

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

B1 . Denth of the evolution of B2 . Den	flicting as minements D2 . Death of an incident in
P1 : Depth of knowledge required, P2 : Range of con P4 : Familiarity of issues, P5 : Extent of applicable co	flicting requirements, P3 : Depth of analysis required
conflicting requirements, P7 : Interdependence	sucs, 10 . Extent of stakeholder involvement and
Complex Engineering Activities (A):	
	A3: Innovation, A4: Consequences to society and the
environment, A5: Familiarity	1 . Innovation, 114 . Consequences to society and the
Bloom's Taxonomy Levels:	
C1: Remember, C2: Understand, C3: Apply, C4: A	nalyze, C5 : Evaluate, C6 : Create
TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	- 24
Lecture	12
Practical / Tutorial / StudioStudent-	12
Centered Learning	
Guided Learning	-
Assignment Preparation	-
Independent Learning	- 12
Individual learning Preparation	18
for Report	
Assessment Continuous	
assessmentReport Submission	1.5
Presentation	-
	0.5
Total	80
TEACHING METHODOLOGY	
Lecture and Discussion, Co-operative and Collabora Mini-Seminars by Experts	tive Method, Problem Based Learning(PBL),
TEACHING SCHEDULE	
Week Topics	Remarks
Foundations of Research: Meaning of Objectives of Research: Metivation in F	

1	Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method.	
2	Practice session on Foundations of Research	
3		

4	Practice session on Proble	ion/ quiz/other assignme nt)							
5	Research Design: Concept and Importance in Research – Features of a good research design – Exploratory Research Design – concept, types and uses, Descriptive Research Designs – concept, types and uses. Experimental Design: Concept of Independent & Dependent variables.								
6	Practice session on Research Design								
7	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testinghypothesis of association.								
8	Practice session on Data A	Analysis							
9	Research Misconduct and research misconduct; Eth to publishing, Plagiarism								
10	Practice session on Resear	rch misconduct and	Ethics		Continuo us				
11	Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts.								
12	Practice session on Use of	tools / techniques f	or Research		nt)				
13	Review Session (Theory)	– I /Final Presentatio	on		Assignment 2, Presentation				
14	Review Session (Practice)) – II /Final Presenta	tion						
ASS	ESSMENT STRATEGY								
	Components	Grading	СО	Bloor	ns Taxonomy				
	Assignment I	20%	CO1, CO3		C2, C3				
	Assignment II	40%	CO2, CO3		C2, C3				
(Continuous Assessment	40%	% CO1, CO2 C2, C3						
	Total Marks 100%								

REFERENCE BOOKS

- 1. Engineering Research Methodology: A Practical Insight for Researchers. Springer, by Deb, Dipankar, Dey, Rajeeb, Balas, Valentina E.
- 2. Research Methods for Engineers, 1st Edition, by David V. Thiel.
- 3. Handbook of Research Methodology by Talati, J.K.
- 4. Introducing Research Methodology: A Beginner's Guide to Doing a Research Project byUwe Flick
- 5. Research Methods: Information, Systems, and Contexts by Kirsty Williamson, GraemeJohanson
- 6. Improving survey questions: design and evaluation. Sage Publications, by Fowler, F. J.
- 7. Computational handbook of statistics (4th ed.). New York: Longman, by Bruning, J. L. &Kintz, B. L.

5.4 Language

Communicative English I

Fall semester: L-1 T-II

COURSE INFORMATION								
Course Code	: LANG 102	Contact Hours	: 3.00					
Course Title	: Communicative English -I	Credit Hours	: 1.50					
PRE-REQUISITE								
None								
CURRICULU	M STRUCTURE							
Outcome Based	Education (OBE)							
SYNOPSIS/RATIONALE								
The English la	inguage course is designed for t	he students to develop	their competence in					

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Additionally, the course emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- 1. To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- 2. To enhance students' interpersonal skills through participation in various group interactions and activities.
- 3. To improve students' pronunciation to enhance comprehensibility in both speaking and listening.
- 4. To gain proficiency in crafting well- organized paragraphs and learn to edit and revise both their own as well as peer's writing.

COURSE CONTENT

Speaking: Introduction to Language: Introducing basic skills of language. English for Science and Technology Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd. Name, family background, education, experience, any special quality/interest, likings/disliking, etc. Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair) Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation)

Listening: Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand; Listening to short conversations between two persons/more than two.

Reading: Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts.

Writing: Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event Paragraph writing, Compare-contrast and cause- effect paragraph.

COURSE OUTCOMES AND SKILL MAPPING

000													
No.	COURSE			Р	ROGF	RAMN	MEO	UTCO	OMES	S (PO	s)		
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	Communicate in English quickly and smartly using the techniques learnt in the class.	~											
2	Understand the techniques of academic reading and writing	~											
3	Communicate ideas and opinions effectively within the shortest possible time										~		
4	Excel in oral and written communication/ Presentation competency										•		

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	P	Y	K	Assessment Methods

1	Communicate in English quickly and smartly using the techniques learnt in the class.	1	C2	-	-	1	Assignment, Quiz
2	Understand the Techniques of academic reading and writing	1	C3	-	-	1	Project/ Assignment , Quiz
3	Communicate ideas and opinions effectively within the shortest possible time	10	C4	-	-	1	Project, Assignment, Quiz
4	Excel in oral and written communication/ Presentation competency	10	C5	-	-	2	Project/ Assignment , Quiz

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, P2: Range of conflicting requirements, P3: Depth of analysis required, P4: Familiarity of issues, P5: Extent of applicable codes, P6: Extent of stakeholder involvement and conflicting requirements, P7: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	-
Practical / Tutorial / Studio	4 2
Student-Centered Learning	-
	42
Guided Learning	30
Assignment Preparation	-
Independent Learning	
Individual learning Preparation	-
for Report	-
Assessment	

Contir	nuous assessment (Descriptive writing	04	
Readin			
Public			
Repor	t Submission		
Presen			
		88	
	CHING METHODOLOGY		
	re and Discussion, Tutorial, Assignment, Report CHING SCHEDULE		
Week	Topics		Remarks
1	Introduction to Language: Introducing basic English for Science and Technology Self-introduction and introducing others: How introduce himself to any stranger / unknown Name, family background, education, experie quality/interest, likings/disliking, etc.	Assignment, Project, Quiz	
	Self-introduction and introducing others: How introduce himself to any stranger / unknown Name, family background, education, exper quality/interest, likings/disliking, etc.	person / a crowd; ience, any special	
2	Asking and answering questions, expressing lik (food, fashion etc.) Asking and giving direction		
3	Discussing everyday routines and habits, maki invitations/ excuses/ apologies/ complaints		
4	Describing personality, discussing and mathematical holiday or an outing to the cinema), Describincident / event		
5	Practicing storytelling, Narrating personal expe	eriences/Anecdotes	
6	Telephone conversations (role play in group or dialogues: Practicing different professional c (role play of doctor-patient conversation, te conversation)		
7	Listening and understanding: Listening, note questions; Students will listen to recorded text information and later on will answer to son		
8	Difference between different accents: British Documentaries from BBC and CNN will be sho to understand	own and students will try	
9	Listening to short conversations between two two	persons/more than	
10	Reading techniques: scanning, skimming, pred	icting, inference;	
11	Reading techniques: scanning, skimming, pred	icting, inference;	
12	Introductory discussion on writing, prewriting,	-	
13	Topic sentence, paragraph development, paragraph describing a person/scene/picture, narrating an		

14	Paragraph writing, Compare-contrast and cause- effect paragraph							
ASSE	ESSMENT STRA	ГЕGY						
Comp	ponents	Grading	СО	Blooms Taxonomy				
Asses	inuous sment ipulsory)							
	iptive writing ng Test	20% 15%	CO1, CO2, CO3, CO4	C2, C3, C4, C5				
	ning Test c Speaking	15% 20%						
Group	o Presentation	30%	CO1, CO2, CO3, CO4	C2, C3, C4, C5				
Total	Marks	100%						
REFERENCE BOOKS								
 Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication. Interactions 1 (Reading). John Langan, Latest edition. McGraw-Hill Publication 								

- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 3. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 4. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation).
- 5. From Paragraph to Essay Maurice Imhoof and Herman Hudson Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.

Communicative English -II

Spring semester: L-2 T-I

COURSE INFORMATION						
Course Code	: LANG 202 Contact Hours : 3.0					
Course Title: Communicative English -IICredit Hours: 1.50						
PRE-REQUISITE						
None						
CURRICULUM STRUCTURE						

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Additionally, the course emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- 1. To develop English language skills to communicate effectively and professionally.
- 2. To strengthen students' presentation skills.
- 3. To develop competency in academic reading and writing.

COURSE CONTENT

Reading: Reading Comprehension: Practice using different techniques Academic reading: comprehension from departmental or subject related passages; Vocabulary for Engineers (some common Engineering terms for both general and dept specific); Reading subject specific text to develop vocabulary

Writing: Writing semi-formal, Formal/official letters, Official E-mail Applying for a job: Writing Cover Letter and Curriculum Vitae; Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading; Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing; Analyzing and describing graphs or charts; Practicing analytical and argumentative writing

Speaking: Public Speaking: Basic elements and qualities of a good public speaker; Set Speech and Extempore Speech: How to get ready for any speech – set or extempore. Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected books/Selected stories for presentation.

Listening: Listening to long lecture on some topics, Listening and understanding speeches/lectures of different accent.

COURSE OUTCOMES AND SKILL MAPPING													
No.	COURSE OUTCOMES			PR	OGRAM	ME C	OUTC	OME	S (PC	Ds)			
	(COs)	1	5	3	4	2	6	7	x	6	10	11	12
		PO1	PO2	P03	P04	PO5	P06	PO7	PO8	909	PO10	PO11	P012
1	Understand the techniques of academic reading and become familiar with technical vocabularies.	~											
2	Understand the techniques of effective academic writing including research article/report writing.	~											
3	Communicate effectively to present their reports and research work within the shortest possible time										~		
4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.										~		
Progr	ram Outcomes (PO):												
PO1: Invest	Engineering knowledge, PO tigation, PO5 : Modern tool u nability, PO8 : Ethics, PO9 : I gement and finance, PO12 : L	sage, Indivi	PO6 idual	: The e and tea	ngineer a mwork, l	nd so	ciety,	PO7 :	Env	ironn	nent a	ind	
COU	JRSE OUTCOMES AND G	ENF	ERIC	SKIL	LS								
No.	Course Outcomes	Corresponding	POs		Bloom' s	laxonomy	Ь	A		K	Assessment Methods		
1	Understand the techniques of academic reading and become familiar with technical vocabularies.		1		C2		-	-		1	Ass Qui	ignmo z	ent,
2	Understand the techniques of effective academic writing including research article/report writing.		1		C3		-	-		1	~	ject/ ignmo z	ent,

3	Communicate effectively to present their reports and research work within the shortest possible time	10	C4	-	-	1	Project, Assignment, Quiz
4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.	10	C5	-	-	2	Project/ Assignment, Quiz

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	_
Lecture	42
Practical / Tutorial / Studio	42
Student-Centered Learning	
Guided Learning	30
Assignment Preparation	-
Independent Learning	
Individual learning	
Preparation for Report	_
Assessment	
Continuous assessment (Writing Test	04
Reading Test Listening Test	
Public Speaking)	
Report Submission	_
Presentation	
Total	88

TEAC	HING METHODOLOGY	
Lecture	e and Discussion, Problem Based Learning (PBL)	
TEAC	HING SCHEDULE	
Week	Topics	Remarks
1	Reading Comprehension: Practice using different techniques	Assignment,
2	Academic reading: comprehension from departmental or subject related passages	Project, Quiz
3	Vocabulary for Engineers (some common Engineering terms for both general and dept specific) Reading subject specific text to develop vocabulary	
4	Writing semi-formal, Formal/official letters, Official E-mail	
5	Applying for a job: Writing Cover Letter and Curriculum Vitae Practicing storytelling, Narrating personal experiences/Anecdotes	
6	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading;	
7	Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing;	
8	Analyzing and describing graphs or charts	
9	Practicing analytical and argumentative writing	
10	Public Speaking: Basic elements and qualities of a good public speaker	
11	Set Speech and Extempore Speech: How to get ready for any speech – set or extempore.	
12	Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected books/Selected stories for presentation.	
13	Listening to long lecture on some topics	
14	Listening and understanding speeches/lectures of different accents	

ASSESSMENT STRATEGY								
Components	Grading	СО	Blooms Taxonomy					
Continuous Assessment (Compulsory)								
Descriptive writing Reading Test Listening	20% 15%	CO1, CO2, CO3, CO4	C2, C3, C4, C5					
Test Public Speaking	15% 20%							

Group Presentation	Group Presentation 30% CO1, CO2, CO3, CO4 C2, C3, C4						
Total Marks	100%						
REFERENCE BOOKS							
 Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation). 							
 Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication. Headway Series – Advanced Level (2 parts with CDs): Oxford University Press Ltd. 							
5 Sneak like Churchill stand like Lincoln - James C. Humes							

6. Speak like Churchill stand like Lincoln - James C. Humes.7. Cambridge IELTS Practice Book h. Selected Sample Reports and Selected Research Articles.

5.5 Interdisciplinary Courses (EECE, PME, CSE, ARCH)

Basic Electrical Engineering offered by EECE Department

Fall semester: L-I T-1

COURSE INFORMATION

Course Code	: EECE 165	Lecture Contact Hours	: 3.00
Course Title	: Basic Electrical Technology	Credit Hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the students with the fundamental concepts of DC and AC circuits, relevant components and theorems. The course is designed to give a brief introduction on the basics of network analysis of electrical and electronic circuits, electronic devices and electrical machines. It aims to build a strong foundation on electrical wiring system with a view to enabling the students to work efficiently in practical field and design efficient layouts for electrical wiring.

OBJECTIVES

- To familiarize the students with the basics of DC and AC circuit analysis.
- To impart knowledge on the working principle and applications of some common yet frequently used electronic devices.
- To introduce the students with the electrical machines that are in use enabling them to analyses the characteristics of the machines changing relevant parameters.
- To ensure that the students have the necessary knowledge of Electrical Wiring system to work efficiently in practical field.

COURSE CONTENT

Measurement of electrical quantities: Current, voltage, resistance,

Measuring instruments: Ammeter, voltmeter, watt meter and multimeter,

Laws of Electric Circuit: Ohm's law, Kirchhoff's voltage and current laws, Series, parallel equivalent circuit and Delta-wye transformation.

Electrical networks analysis: Branch and loop currents, node and mesh current analysis, Super position, Thevenin's and Norton's theorem,

AC circuit analysis: Instantaneous current, voltage and power, effective current and voltage, average power.

Introduction to Electronics devices with simple application: Diodes, Rectifiers.

Familiarization with different types of electrical machines: DC generators and motors, alternators, AC motors, transformers. Working principles of transformers and induction motors.

Electrical Wiring: Rules and Regulations, wiring for residential, industrial, commercial buildings, cost estimation for electrical wiring, illumination. **COURSE OUTCOMES AND SKILL MAPPING** No. COURSE PROGRAMME OUTCOMES (POs) OUTCOMES (COs) PO12 P010 P011 PO5 PO6 P02 PO3 P04 PO7 PO8 P09 PO1 1 Be able to **apply** the concepts of DC and $\sqrt{}$ AC circuit analysis for solving relevant problems. Be able to **explain** the 2 working principles of $\sqrt{}$ commonly used electrical machines and solve problems. 3 Be able to **analyze** potential solution $\sqrt{}$ using network theorem. 4 Be able to **design** efficient layouts for the wiring system of $\sqrt{}$ residential. commercial and industrial buildings. **COURSE OUTCOMES AND GENERIC SKILLS** Corresponding POs Assessment Methods Bloom's Taxonomy No. **Course Outcomes** CP(WP) KP(WK) CA(EA) Be able to **apply** the concepts of DC and Class Test, CO1 AC circuit analysis Assignment, PO1 C4 1 3 _ for solving relevant Final Exam problems. Be able to explain Mid Term/ CO2 PO1 C3 3 1 _ Final Exam the working

	principles of commonly used						
	electrical machines and solve problems.						
	and solve problems.						
CO3	Be able to analyze potential solution using network theorem.	PO1	C2	-	-	3	Mid Term/ Final Exam
CO4	Be able to design efficient layouts for the wiring system of residential, commercial and industrial buildings.	PO3	C3	P2	-	5	Mid Term/ Project/ Final Exam
WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile							
Engine Profile	eering Activities/ CA= e/ KP= Knowledge Prof	E Complex A	U		-		•
Engine Profile TEAC	eering Activities/ CA= e/ KP= Knowledge Prof CHING LEARNING S	E Complex A ile TRATEGY	U		ashingt	on Acco	ord Knowledge
Engine Profile TEAC Teach	eering Activities/ CA= e/ KP= Knowledge Prof C HING LEARNING S ing and Learning Activi	E Complex A ile TRATEGY	U		ashingt		ord Knowledge
Engine Profile TEAC Teach Face t	eering Activities/ CA= e/ KP= Knowledge Prof CHING LEARNING S' ing and Learning Activi to Face Learning	E Complex A ile TRATEGY	U		ashingt	on Acco	ord Knowledge
Engine Profile TEAC Teach Face t	eering Activities/ CA= e/ KP= Knowledge Prof. CHING LEARNING S ing and Learning Activi to Face Learning re	E Complex A ile TRATEGY	U		ashingt	on Acco	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic	eering Activities/ CA= e/ KP= Knowledge Prof CHING LEARNING S ing and Learning Activi to Face Learning re cal / Tutorial / Studio	E Complex A ile TRATEGY	U		ashingt	on Acco	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic	eering Activities/ CA= e/ KP= Knowledge Prof. CHING LEARNING S ing and Learning Activi to Face Learning re	E Complex A ile TRATEGY	U		ashingt	on Acco	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic Guide Non-fa	eering Activities/ CA= e/ KP= Knowledge Prof CHING LEARNING S [*] ing and Learning Activi to Face Learning re cal / Tutorial / Studio ed Learning	E Complex A ile TRATEGY ties	U		ashingt	ement (h	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic Guide Non-fa	eering Activities/ CA= e/ KP= Knowledge Prof CHING LEARNING S ing and Learning Activi to Face Learning re cal / Tutorial / Studio ed Learning ace-to-face learning	E Complex A ile TRATEGY ties	U		ashingt	on Acco ement (h 42 42	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic Guide Non-fa	eering Activities/ CA= e/ KP= Knowledge Profit CHING LEARNING S' ing and Learning Activi to Face Learning re cal / Tutorial / Studio ed Learning ace-to-face learning on of the previous lectu	E Complex A ile TRATEGY ties	U		ashingt	ement (h 42 42 21	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic Guide Non-fa Revisi Prepar Assess Contin	eering Activities/ CA= e/ KP= Knowledge Profit CHING LEARNING S' ing and Learning Activities to Face Learning re cal / Tutorial / Studio ed Learning ace-to-face learning on of the previous lecture tration for final examinat sement muous assessment	E Complex A ile TRATEGY ties	U		ashingt	ement (h 42 42 21 21 2	ord Knowledge
Engine Profile TEAC Teach Face t Lectur Practic Guide Non-fa Revisi Prepar	eering Activities/ CA= e/ KP= Knowledge Profit CHING LEARNING S' ing and Learning Activities to Face Learning re cal / Tutorial / Studio ed Learning ace-to-face learning on of the previous lecture tration for final examinat sement muous assessment	E Complex A ile TRATEGY ties	U		ashingt	ement (h 42 42 21 21	ord Knowledge

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion.

TEACHING SCHEDULE							
Week 1	Topics	Assessment					
Class 1	Electricity, Electric element and components, Electric Circuit,						
	Current (AC or DC), Voltage.						
Class 2	Power and energy, Active elements, Passive elements,						
	Independent and Dependent source						
Class 3	Ohm's law, Resistor, Conductor, Insulator, Semi-conductor,						
	Branch, Node, Loop, Mesh						
Week 2		Class Test,					
Class 4	Series-parallel connection	Final Exam					
Class 5	KCL, KVL, Analysis of equivalent resistance of electrical circuit						
Class 6	Analysis of voltage, current and power						
Week 3							
Class 7	Y to Δ conversion derivation						
Class 8	Analysis of electrical circuits with $Y-\Delta$ connection						
Class 9	Ammeter, Voltmeter, Wattmeter and Multimeter						
Week 4							
Class 10	Su er node analysis						
Class 11	Various mathematical problems solving nodal analysis						
Class 12	Mesh Analysis						
Week 5							
Class 13	Network Theorems						
Class 14	Network Theorems						
Class 15	Magnetic Circuits	Mid Term					
Week 6		who remi					
Class 16	Introduction to AC, Reactive circuit components						
Class 17	Network theorems for AC circuit analysis						
Class 18	Network theorems for AC circuit analysis						
Week 7							
Class 19	Average and RMS values of current, voltage and power						
Class 20	Instantaneous Current, voltage and power for RC and RL circuits						
Class 21	Instantaneous Current, voltage and power for RLC circuits						
Week 8							
Class 22	Diode (Working principle)]					
Class 23	Diode (Applications and mathematical problems)	Class T. (
Class 24	Transistor	Class Test,					
Week 9		Final Exam					
Class 25	Transformer	1					
Class 26	DC generator	1					

Class 27	DC generat	tor, DC motor			
Week 10					
Class 28	DC motor				
Class 29	Induction N	Motor			
Class 30	Alternator				
Week 11					
Class 31	Introductio	n to electrical wi	ring		
Class 32	Rules and I	Regulations for e	lectrical wiring		
Class 33	Electrical w	viring for residen	tial buildings		
Week 12					
Class 34	Electrical w	viring for residen	tial buildings		
Class 35	Electrical w	viring for industr	ial buildings		
Class 36	Electrical w	viring for industr	ial buildings		
Week 13					Class Test,
Class 37	Electrical w	viring for comme	ercial buildings		Final
Class 38	Electrical w	viring for comme	ercial buildings		
Class 39	Cost estimation	ation for electrica	al wiring of a building		
Week 14					
Class 40	Cost estimation	ation for electrica	al wiring of a building		
Class 41	Introductio	n to illumination	, Illumination for different t	ypes of	
	building				
Class 42	Revision				
ASSESSME	NT STRAT	TEGY			·
Component	s	Grading	СО	Blooms	Taxonomy
Continuous Assessment Class Test, Assignment, Class participation, Class Attendance, Mid Term Examination		40%	CO1, CO2, CO3, CO4	C2, C2,	
Final Exam		60%	CO1, CO2, CO3, CO4	C2, C2,	C3, C4
Total Mark	s	100%			
REFERENC	CE BOOKS	1		1	

1. Introductory Circuit Analysis - R.L. Boylestad; Prentice Hall of India Private Ltd.

2. Alternating Current Circuits – Russell & George F. Corcoran; John Wiley and Sons.

3. A Textbook of Electrical Technology- B.L. Theraja and A.K. Theraja

4. Electrical Wiring, Estimating and Costing - S.L. Uppal; Khanna Publishers

5. Fundamentals of Electric Circuits - Charles Alexander and Mathew Sadiku

Basic Mechanical Engineering and Workshop Sessional offered by ME Department Fall semester: L-I T-1

COURSE INFORMATION

eeense me			
Course Code	: ME 132	Lecture Contact Hours	: 3.00
Course Title	: Workshop Technology Sessional	Credit Hours	: 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To help the students to explore various welding techniques and put theory in practice. Our mission is to expose students to the constructions of different mechanical machines and analyze their performance. This course is targeted to verify the working principle of types of welding, casting, mouldings and also to gain knowledge of different manufacturing parts from lathe, drilling, milling and drilling machine etc. and relate them with their theoretical knowledge.

OBJECTIVES

- To use different manufacturing (machining, welding, foundry, sheet metal working, etc.) processes required to manufacture a product from the raw materials.
- To use different measuring, marking, cutting tools used in workshop.
- Be aware of the safety precautions while working in workshop.

COURSE CONTENT

Carpentry shop (3/2 hrs/week)

Wood working tools; wood working machine: band saw, scroll saw, circular saw, jointer, thickness planner, disc sander, wood lathe; types of sawing; common cuts in wood works; types of joint; defects of timber: natural defects and artificial defects; seasoning; preservation; substitute of timber; commercial forms of timber; characteristics of good timber; use of fastening; shop practice: practical job, planning and estimating of a given job.

Machine shop (3/4 hrs/week)

Kinds of tools; common bench and hand tools; marking and layout tools, measuring tools, cutting tools, machine tools, bench work with job; drilling, shaper, lathe and milling machines: introduction, type, size and capacity, uses and applications.

Welding shop (3/4 hrs/week)

Methods of metal joints: Riveting, grooving soldering, welding; Types of welding joints and welding practice; Position of arc welding and polarity: Flat, vertical, horizontal, overhead; Electric Arc welding and its machineries; Welding of different types of materials: Low carbon steel, cast iron, brass, copper, stainless steel, aluminum; Types of electrode, fluxes and their composition; Arc welding defects; Test of Arc welding: Visual, destructive and non-destructive tests. Types of gas welding system and gas welding equipment; Gases and types of flame; welding of different types of materials; Gas welding defects; test of gas welding.

COU	JRSE OUTCOMES AN	D SK	ILL	MAI	PPING								
No.	COURSE			F	ROGR	AMN	ME O	UTCO	OMES	S (PO	s)		
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Be able to identify the basics of tools and equipment used in machining, welding, casting and molding.												
2			\checkmark										
3	Find out about the importance of general safety precautions on different shop floors.	\checkmark											
4	Develop practical skills using tools and equipment.					\checkmark							
COU	JRSE OUTCOMES AN	D GI	ENEF	RIC S	SKILLS	S		1					
No.	Course Outcomes	e Outcomes BOS			Bloom's Taxonomy	finonovar	CP(WP)	CA(EA)		KP(WK)		Assessment Methods	
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and molding.	PO1	PO1		C1		-	1		-	Repo Lab	ort, Q Test	Quiz,
CO2	Be able to compare between different types of welding and machining processes and select proper	PO2	2, PO	3	C1, C	23	-	1		-	Repo Lab	ort, Q Test	Quiz,

	cutting tool for specific machining processes.									
CO3	Find out about theimportanceofgeneralsafetyprecautionsondifferent shop floors.	PO1	C2	-	-	-	Report, Quiz, Lab Test			
CO4	Develop practical skills using tools and equipment.	PO5	C3	-	1	-	Report, Quiz, Lab Test			
Engine Profile	WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile									
	CHING LEARNING S									
	ng and Learning Activi	ties		Engagement (hours)						
	o Face Learning									
Lectur				14						
	cal / Tutorial / Studio			28						
	d Learning			10						
-	ation of Lab Reports			10 10						
-	ation of Lab Test ation of presentation			5						
-	ation of Quiz			10						
-	ement in Group Project	3		20						
	endent Learning									
_	lual learning			-						
	ation for Report			-						
Assess										
	uous assessment			14						
Final (1							
Total				112						
TEAC	HING METHODOL	OGY								
Lectur	e followed by practical	experiments and	d discussi	on.						

Weeks	Topics								
1	Design and making of pattern for casting								
2	Mold making,	, casting and ass	sembly of final project		Test, Quiz				
3	Study of elect	ric arc welding							
4	Study of Resi	stance Welding	/Spot Welding						
5	Study of Weld	ling joints and v	welding positions						
6	Study of Gas	Welding/cutting							
7	Study of TIG	and MIG Weld	ing						
8	Manufacturing	g of machine co	omponent by using Lathe mac	hine					
9	Manufacturing	g of machine co	mponent by using Shaper ma	chine					
10	Manufacturing	g of a machine	component by using Milling N	Machine					
11	Manufacturing	g of a machine	component by using Drilling	Machine					
12	1 2	Middle Lap enon T joint, B		p Joint,					
13	Viva	j ,							
14	Quiz Test								
ASSESS	MENT STRAT	ГEGY							
Compon	ents	Grading	СО	Blooms	Taxonomy				
Continuous Assessment Lab Participation and Report		60%	CO1, CO2, CO3, CO4	C1, C3,	C4				
Lab Quiz		40%	CO1, CO2, CO3, CO4	C2, C3,	C4				
Fotal Ma									

REFERENCE BOOKS

Machine Shop Practice – James Anderson, W. A. Chapman.
 Callister W. D., Material Science & Engineering, John Wiley & Sons.

Computer Programing Sessional offered by CSE Department

Spring Semester L-2, T-I

CO	URSE INF	ORMATION												
Cou	rse Code	: CSE 176					Lecture contact hours					: 3.00		
Cou	rse Title	: Computer Programming Sessional				Cred	it hou	rs			: 1.5	0		
PRE	PRE-REQUISITE													
Non	e													
CUI	RRICULU	M STRUCTUR	E											
Outo	come Base	d Education (OBI	E)											
SYN	NOPSIS/R	ATIONALE												
stud	This is a hand on training course for computer programming for civil engineers. In this course students will be given basic knowledge on algorithm, problem solving technique and how to apply this in a computer language program.													
OBJ	IECTIVE													
	Fo introduc correct pro	ce students the ba grams	sic co	oncep	ts of	C++	langu	age ai	nd ena	able th	nem 1	to wri	te sin	ple
CO	URSE CO	NTENT												
prog	ramming l	concepts and algo anguage: data typ rays, input and ou	es, op			-								ed
CO	URSE OU	TCOMES AND	SKIL	LM	APP	ING								
No		E OUTCOMES			P	ROG	RAMI	ME O	UTC	OMES	5 (PC	Ds)		
•	(COs)		PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	P012
1	Understa	and algorithmic												
	thinking, problem-	solving es to write clear,	\checkmark											
2	Use built and differ e.g. arithi incremen assignme	-in data types rent operators	\checkmark											
3	Write co control st if/else, fo do/while	des using ructures i.e., if,												

Progr	ram Outcomes (PO):		I	I			I		
	Engineering knowledge, P		•	,	0	1			
	solutions, PO4 : Investigation, PO5 : Modern tool usage, PO6 : The engineer and society, PO7 :								
	Environment and sustainability, PO8 : Ethics, PO9 : Individual and teamwork, PO10 : Communication, PO11 : Project management and finance, PO12 : Life-long learning								
	COURSE OUTCOMES AND GENERIC SKILLS								
		ad							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	K		Assessment Methods	
	Understand								
CO1	algorithmic thinking, problem-solving	1	C2	1		1,3	Asse	lass ssmen	t/
	techniques to write clear, simple codes							Quiz	
	Use built-in data types and different operators							lass	
CO2	e.g. arithmetic, increment, decrement, assignment, relational, equality etc effectively	1	C2	2,3		3	Asse	ssmen Juiz	t/
CO3	Write codes using control structures i.e., if, if/else, for, while, do/while etc for solving engineering problems	5	C3	2,3		3	Asse	lass ssmen Juiz	.t/
Know	vledge Profile (K):		•		ł				
knowl	atural sciences, K2 : Mathe edge, K5 : Engineering des rch literature		0	0			-		
Comp	olex Engineering Problem	<u>n (P)</u> :							
analys	P1 : Depth of knowledge required, P2 : Range of conflicting requirements, P3 : Depth of analysis required, P4 : Familiarity of issues, P5 : Extent of applicable codes, P6 : Extent of stakeholder involvement and conflicting requirements, P7 : Interdependence								
Comp	Complex Engineering Activities (A):								
	A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity								
<u>Bloon</u>	n's Taxonomy Levels:								
C1 : R	emember, C2: Understand	, C3: Apply,	C4 : Ana	lyze, C5	: Evalua	ite, C6:	Create		
TEAC	CHING LEARNING STR	RATEGY							
Teach	ing and Learning Activitie	s			Engag	gement (hours)		

Face to Face Learning	
Lecture (2 hours/week x 12 weeks)	24
Class assessment (1 hours/week X09 weeks)	09
Guided Learning	
Assessment Preparation (1.0 hours/week x 09 weeks)	09
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	11
Preparation for quiz	04
Assessment	
Quiz & Viva	03
Total	60

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments
1	1	Introduction of the course, Concept of Programming (what is C++, Compiling, Debugging, Running a small program etc)	
2	2	Data type, Variables and Constants	Class Assessment
3	3	Operators, System header files	Class Assessment
4	4	Loops (if, elseif) Decision making	
5	5	Loops (for) Decision making	
6		Mid Quiz	Quiz
7	6	Function	
8	7	Loops (while)	
9	8	Vector/array	
10	9	Multi-dimensional Arrays	Class Assessment
11	10	Data file handling	
12	11	String function and Practice Examples	
13	12	Pointer	

14	Final Quiz		Quiz
ASSESSMENT STI	RATEGY		
Components	Grading	СО	Blooms Taxonor
Class Assessment	50%	CO1, CO2, CO3	C2, C3
Quiz & viva	50%	CO1, CO2, CO3	C2, C3
Total Marks	100%		
REFERENCE BOO	KS		
2. Programming w	•		wir Mustafy, Md.

Engineering Computation Sessional offered by CSE Department

Fall Semester L-2, T-II

COURSE	COURSE INFORMATION						
Course Code Course Title	: CSE 274 : Engineering Computations Sessional	Lecture contact hours Credit hours	: 3.00 : 1.50				
PRE-REC	PRF-REQUISITE						

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a hand on training course for computer programming for civil engineers. In this course, students will be given knowledge to solve real life engineering problems using various numerical methods which will be useful later on in various projects.

OBJECTIVE

- To gain knowledge on the basics of computational programming tools.
- To become skilled at the application of various numerical analysis.

COURSE CONTENT

Introduction to hi-level computational programming tools, application to numerical analysis: basic matrix computation, solving systems of linear equations, non-linear equations, differential equations, interpolation and curve fitting, numerical differentiation, numerical integration, application to engineering problems: solving problems related to mechanics, numerical solution of equation of motion etc.

No.	COURSE	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	P012
1	Ability to interpret high level computational programming tools					\checkmark							
2	Ability to solve systems of linear equations, Ordinary & Partial Differential equations		\checkmark										
3	Ability to interpret high level		\checkmark										

	computational programming tools						
Progra	am Outcomes (PO)	:					
PO1: I solutio PO7: I Comm	Engineering knowledons, PO4 : Investigations Environment and sumination, PO11 : Province the PO11 of the Point State S	dge, PO2 : Pro on, PO5 : Mo stainability, P roject manage	odern tool O8 : Ethic ement and	usage, PO s, PO9: In finance, P	6: The oldividua	engineer 1 and tea	and society, mwork, PO10 :
COUP	RSE OUTCOMES A	AND GENE	RIC SKI	LLS			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ч	А	K	Assessment Methods
CO1	Ability to interpret high level computational programming tools	5	C3	1, 2		1, 2	Class Assessment /Quiz
CO2	Ability to solve systems of linear equations, Ordinary & Partial Differential equations	2	C4	2		1, 2	Class Assessment /Quiz
CO3	Ability to apply numerical analysis to engineering problems	2	C3	3		2, 3	Class Assessment /Quiz

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHI	NG LEARNING STRATEGY	
Teaching	and Learning Activities	Engagement (hours)
Face to F	ace Learning	
`	1.5 hours/week x 14 weeks)	21
	gnment (1 hours/week X14 weeks)	14
Guided I	8	
Assignme weeks)	ent Preparation (1.0 hours/week x 14	14
,		
-	lent Learning	
Preparatio	on for tests and examinations	06
Assessme	ent	
Quiz		05
Total		60
TEACHI	NG METHODOLOGY	
Lecture and	nd Discussion, Problem Based Learn	ing (PBL)
TEACHI	NG SCHEDULE	
Week	Topics	Assessments
1	MATLAB Fundamentals	
2	MATLAB Fundamentals	
3	MATLAB Fundamentals	
4	Curve Fittings	Class Assessment
5	Numerical Differentiations &	Integrations
6	Numerical Differentiations &	Integrations
7	Mid-term Quiz	Quiz
8	System of Linear Equations	
9	Roots of the Equations	
10	Eigen Values	
11	Fourier Analyses	Class Assessment
12	Ordinary & Partial Differentia	Equations
13	Ordinary & Partial Differentia	Equations
14	Final Quiz	Quiz
ASSESSI	MENT STRATEGY	
Compone	ents Grading Co) Blooms Taxonomy

Assignment Report & Class Assessment	50%	CO1, CO2, CO3	C3, C4		
	50%	CO 1	C3		
Quiz		CO 2	C4		
		CO 3	C3		
Total Marks	100%				
REFERENCE BOOKS					

- 1. Numerical Methods for Engineers and Scientists J. D. Hoffman
- 2. App. Numerical Methods with Matlab for Engrs and Scientists S.C. Chapra.
- 3. Numerical Mathematical Analysis James b. Scarborough
- 4. Introductory Methods of Numerical Analysis S.S. Sastry
- 5. Numerical Methods for Scientific and Eng. Computation Jain, Iyengar, Jain.
- 6. Engineering Data Analysis with MATLAB® 1st Edition Tanvir Mustafy, Md. Tauhid Ur Rahman
- 7. Statistics and Data Analysis for Engineers and Scientists Tanvir Mustafy, Md. Tauhid Ur Rahman

CHAPTER 6

DETAILED SYLLABUS OF BASIC ENGINEERING COURSES

Spring Semester L-1, T-I

COURSE INFORMATION

Course Code	: CE 100	Lecture contact hours	: 1.5
Course Title	: Civil Engineering Drawing	Credit hours	: 1.5

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a drawing course where students can lean drawing different linear and curved geometric figures e.g. pentagon, hexagon, octagon, ellipse, parabola, hyperbola; solid geometry. Concept of isometric objects and orthographic views are discussed for clear understanding of students. In this course students will be able to learn how to draw the plan, elevation and sectional view of one storied building and bridges.

OBJECTIVE

- To get familiar with different drawing instruments and technical standards.
- To develop a deep understanding of different geometric figures
- To gain knowledge about drawing isometric and orthographic views.
- To understand the concept of plan, elevation and sectional views of one storied building and bridge.

COURSE CONTENT

Introduction to civil engineering drawing; Drawing instrument and their uses; lines and dimension; plane geometry: drawing of linear and curved geometric figures, e.g. pentagon, hexagon, octagon, ellipse, parabola, hyperbola; solid geometry: concept of isometric view and oblique view, theory of projections; drawing of isometric view of 3D objects; drawing of orthographic view from isometric view and vice versa, elevations and sectional views of one-storied buildings, culvert, bridges etc.

No.	COURSE PROGRAMME OUTCOMES (POs)												
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
1	Recognize different drawing equipment and technical standards.	\checkmark											

2	Understand						
	isometric and						
	orthographic	\checkmark					
	views of simple						
	objects.						
3	Draw plan,						
	elevation and	\checkmark					
	sectional views						
	of residential						
	building						
Progra	am Outcomes (PO)	:					
solutio PO7 : E Comm	 PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 						
COUR	SE OUTCOMES	AND GENE	RIC SKIL	LS		I	I
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Р	А	K	Assessment Methods
CO1	Recognize different drawing equipment and technical standards.	1	C1	4		3	Class Assessment
CO2	Understand isometric and orthographic views of simple objects.	1	C2	2		4	Quiz
CO3	Draw plan, elevation and sectional views	1	C2	1		5	Group Project and Quiz

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

A1·Rar				
	-	rces, A2: Level of interactions, A	A3 : Innovation, A4 : C	onsequences to
•		ronment, A5: Familiarity		
<u>Bloom'</u>	<u>s Taxonom</u>	<u>v Levels</u> :		
C1: Rer	nember, C2	: Understand, C3: Apply, C4: A	nalyze, C5: Evaluate,	C6: Create
TEACH	HING LEA	RNING STRATEGY		
Teachin	g and Learr	ing Activities	Engagement ((hours)
Face to	Face Lear	ning	10	
Lecture	(1 hours/we	eek x 10 weeks)		
Guided	Learning		24	
Home A	Assessment	(2 hour/week x 12 weeks)		
Indepe	ndent Lear	ning	05	
-		s and examination		
Assessn				
Quiz			02	
Viva			02	
	erformance(1.5 hr/week X 12 weeks)	18	
		,		
Total			60	
TEACH		THODOLOGY		Decediteration
Lecture (PBL)		sion, Co-operative and Collabora		n Based Learning
TEACH Lecture (PBL) TEACH	and Discus	sion, Co-operative and Collabora		n Based Learning
TEACH Lecture (PBL) TEACH	and Discus	sion, Co-operative and Collabora		-
TEACH Lecture (PBL) TEACH Weeks	and Discusting SCH Lectures	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments		Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discust HING SCH Lectures 1	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning	ative Method, Problem	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discusting SCH Lectures	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or	ative Method, Problem	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discust HING SCH Lectures 1 2 3 4	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects	ative Method, Problem	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discust HING SCH Lectures 1 2 3 4 5	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He	thographic and 3D xagon, Octagon etc.	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discust HING SCH Lectures 1 2 3 4	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour	thographic and 3D xagon, Octagon etc.	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks	and Discust HING SCH Lectures 1 2 3 4 5	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour each day submission	thographic and 3D xagon, Octagon etc.	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks 1.	and Discus HING SCH Lectures 1 2 3 4 5 6	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour	thographic and 3D xagon, Octagon etc. and title block for xagon, Octagon etc.	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks 1.	and Discust HING SCH Lectures 1 2 3 4 5 6 7	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour each day submission Plane Geometry: Pentagon, He Practice on Isometric Views from Practice on Isometric Views &	thographic and 3D xagon, Octagon etc. and title block for xagon, Octagon etc. and title block for	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks 1. 2. 3.	and Discust HING SCH Lectures 1 2 3 4 5 6 7 8 9	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour each day submission Plane Geometry: Pentagon, He Practice on Isometric Views fro Practice on Isometric Views & of 3D Object	thographic and 3D xagon, Octagon etc. and title block for xagon, Octagon etc. and title block for	Assignments Conducted in every class on the relevant
TEACH Lecture (PBL) TEACH Weeks 1.	and Discust HING SCH Lectures 1 2 3 4 5 6 7 8	sion, Co-operative and Collabora EDULE Topic Introduction Use of Instruments Lines and Dimensioning Concepts of Isometric view, or objects Plane Geometry: Pentagon, He Acquaintance with sheet layour each day submission Plane Geometry: Pentagon, He Practice on Isometric Views from Practice on Isometric Views &	thographic and 3D xagon, Octagon etc. and title block for xagon, Octagon etc. om 3D view Orthographic views	Assignments Conducted in every class on the relevant

7.	12	Introduction to dif	ferent components of b	uilding	
	13	Understanding syr	lrawings		
8.	14	Plan view of one s	ling		
9.	15		of one storied Resident	ial	
		building			
10.	16		one storied Residential		
11.	17		information provided	by the	
	1.0	Structural and Arc	hitectural drawings		
12.	18				Quiz on
10	10			1 4	Lecture 17
13. 14.	19	Plan, Elevation an	d Sectional view of Cu	lvert	FINAL OUT
· · ·					FINAL QUIZ
ASSESS	SMENT ST	'RATEGY			
Compo	nents	Grading	СО	Bloom	s Taxonomy
Quiz		70%	CO2, CO3	C1,C2	
			CO 1	C1	
Assessm	nent	15%	CO 2	C2	
			CO 3	C2	
Viva and observat		15%	CO2, CO3	C1,C2	
Total M	arks	100%			
REFER	ENCE BO	OKS			
1. Civi	l Engineerir	ng Drawing by - Gu	rcharan Singh & Subas	h Chandra	

Spring Semester L-1, T-I

COURSE INF	ORMATION		
Course Code	: CE 101	Lecture contact hours	: 3.00
Course Title	: Analytic Mechanics	Credit hours	: 3.00
		•	

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to provide students the basic concept and in-depth knowledge in the field of mechanics of rigid body which will be helpful for their future study/ courses.

OBJECTIVE

- Understanding different force systems and their basic mathematics in order to solve statically determinate stationary rigid bodies, external / internal forces in a statically determinate beam, trusses and frames composed of pin connected members and forces developed in the cables and supports.
- To apprehend the problems involving friction and their real application (in a limited scale)
- To determine geometric properties like centroids of line, area and volume, theorems of Pappus and Guldinus, centre of pressure along with internal properties of object such as rectangular and polar moment of inertia and radius of gyration of single and composite areas, moment of inertia about inclined axis, maximum and minimum moment of inertia, moment of inertia of masses.
- Solve different problems with the concept of principle of Impulse and Momentum.

COURSE CONTENT (2021)

Coplanar and non-coplanar force systems; concepts of free body diagram, equations for static equilibrium; internal forces and moments, analyses of two-dimensional frames and trusses; friction, impending moment; introduction to space frames; centroids of lines, areas and volumes; moments of inertia of areas and masses; linear and angular impulse and momentum.

No.	COURSE			PR	OGRA	MN	IE OU	UTC	OME	S (PC	Os)		
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Ability to understand free body diagram of different types of rigid bodies.	\checkmark											

2	Ability to apply equations of equilibrium to analyze statically determinate rigid bodies.		V					
3	Ability to estimate the geometric properties like centroids, moment of inertia etc. of different objects.	\checkmark						
4	Ability to apply the principles of impulse and momentum.		\checkmark					

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE O	COURSE OUTCOMES AND GENERIC SKILLS						
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	A	K	Assessment Methods
CO1	Ability to understand free body diagram of different types of rigid bodies.	1	C2	1		3	Class Test/ Assignment
CO2	Ability to apply equations of equilibrium to analyze statically determinate rigid bodies.	2	C3	1		3, 4	Class Test/ Assignment/ Mid-term/ Pop quiz/ Final Exam
CO3	Ability to estimate the geometric properties like centroids, moment of inertia	1	C3	1		3, 4	Class Test/ Assignment/ Mid-term/ Pop quiz/ Final Exam

etc. object	of different cts.					
CO4 the p	ity to apply principles of ilse and nentum	2	C3	1	3	Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	42
(4 hours/week x 14 weeks)	
Guided Learning	
Tutorial/ Assignments (4 hours/week x 5 weeks)	18
Independent Learning	
Individual learning (1 hour lecture \approx 1.0 hour	33
learning)	22
Preparation for tests and examination	
Assessment	
Pop Quiz/Class Test/Mid-Term Exam	2
Final examination	3
Total	120
TEACHING METHODOLOGY	
Lecture and Discussion, Problem Based Learning	(PBL)

TEAC	CHING SCH	IEDULE	
Week	Lectures	Topics	Assessments
	1	Resultant and Components of Forces	
1	2	Types of Forces and Introduction to Coplanar Concurrent Forces	Assignment, Class Test, Mid term, Den
1	3	Centroids: Definitions of centroids, centre of mass and centre of gravity, Formulas of centroids for line, area and volume.	Mid-term, Pop quiz, Final Exam
	4	Concept of Equilibrium	
2	5	Free Body Diagrams	
2	6	Principle of symmetry and centroid, centroid by summation method	
	7	Introduction to Truss	
	8	Analysis of Truss by joint Method	
3	9	Centroid by Integration, practice centroid of lines by integration, Centroid of plane triangle, Centroid of sector of a circle, Centroid of area without axis of symmetry.	
	10	Analysis of Truss by Joint to Joint Method	
4	11	Tutorial 1(on Forces, Resultant and Components)	
	12	Centroid of a volume (right circle cone, cylinder, hemisphere etc.).	
	13	Tutorial on Analysis of Truss/Frames	
5	14	Concept of Moments	
5	15	Centroid of composite area, Centroid of composite volume	
	16	Concept of Parallel Force System	
6	17	Determination of Reaction Forces, Forces on Members of Frames	
	18	Centroid of composite area, Centroid of composite volume	
	19	Tutorial on Determination of Reaction Forces, Forces on Members of Frames	
7	20	Tutorial on Determination of Reaction Forces, Forces on Members of Frames	
	21	Theorem of Pappus and Guldinus, Center of Pressure	
8	22	Non-Concurrent, Non – Parallel, Coplanar Forces	

	23	radius of gyration, Par	ar and Polar moment of A callel axis and perpendicu mula, rectangular to polar	lar axis			
	24	and radius of gyration	Practice problems of Rectangular Moment of Inertia and radius of gyration with axis of symmetry (Rectangle, triangle etc.)				
	25	Moment of inertia of a	areas by integration				
9	26	Tutorial on Analysis o	f Truss by Method of Sec	tion			
	27	Moment of inertia of a	composite areas				
	28	Tutorial on Non-Conc Forces	urrent, Non – Parallel, Co	oplanar			
10	29	Moment of Inertia abo Inertia	out Inclined Axis, Product	of			
	30	Maximum and Minim formula and Mohr's c	um Moment of Inertia by ircle				
	31	Moment of inertia of 1	nasses				
11	32	Concept of Friction ar Friction	Concept of Friction and problems associated with Friction				
	33		oment of inertia of mass and practice problems blid cylinder, Sphere, thin disk, cone)				
	34	Analysis of Wedges					
12	35	Moment of Inertia of I	masses of composite bodi	es			
	36	Planar kinematics of r momentum	igid bodies: Impulse and				
	37	Tutorial on Friction ar	nd Belt Friction				
13	38	Principle of impulse a	nd momentum				
	39	Problems solving on l	inear impulse and momen	tum			
	40	Problem solving on W	Vedges				
14	41	Problems solving on a	Problems solving on angular impulse and momentum				
	42	Problems solving on 1 momentum	-				
ASSE	SSMENT S	TRATEGY					
Comp	onents	Grading	СО	Blooms Taxonomy			
CT/ M Active	sment assignments id Term/	^{3/} 40%	CO1, CO2, CO3, CO4	C2, C3			

Final Exam	60%	CO2, CO3, CO4	C3	
Total Marks	100%			
REFERENCE BOOKS				
1. "Analytic Mechani	cs" by – Faires & Cha	ambers (3 rd Edition)		
2. "Engineering Mechanics" by – Singer				
3. "Engineering Mechanics: Statics", 13 th Ed., Hibbeler				
4. "Engineering Mechanics: Dynamics", 13 th Ed., Hibbeler				

Fall Semester L-1, T-II

COURSE INFORMATION

Course Code : CE 102

: CE 102	Lecture contact hours
: Computer Aided Drawing	Credit hours

: 3.00

PRE-REQUISITE

Course Title

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will be useful for drawing of basic civil engineering components using AutoCAD software which will be helpful during project work in later semesters as well as in engineering practice.

OBJECTIVE

- To know about basics engineering drawing formats
- To gain knowledge about the basic functions of AutoCAD efficiently
- To take data and transform it into graphic drawings

COURSE CONTENT

Introduction to Computer Aided Drawing (CAD), Introduction to CAD packages, Basic drawing and modifying tools of AutoCAD, Drawing, editing and dimensioning of any objects, Isometric view and orthographic view of 3D object; Plan, elevation and sectional views of multi-storied buildings, Reinforcement details of beams, slabs, stairs etc.; Plan and section of septic tank; plans, elevations and sections of culverts, bridges and other hydraulic structures; drawings of building services.

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COS)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	PO12
1	Ability to understand the basic concept of AutoCAD software in civil engineering applications												
2	Ability to apply the knowledge to draw detail architectural and structural drawing of a residential building	\checkmark											
3	Ability to apply the knowledge to draw sectional view, plan	\checkmark											

	view and elevation of various structures								
PO1: soluti PO7: Comr	ram Outcomes (PO): Engineering knowledge ons, PO4: Investigation Environment and sustai nunication, PO11: Proje RSE OUTCOMES AN	, PO5 : Mode nability, PO ect managem	ern tool usa 8: Ethics, l ent and fin	nge, PO6 PO9 : Ind ance, PO	6: The o lividua	engineer l and tea	and so amworl	ciety, x, PO	
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	P	A	K		Assessment Methods	
CO1	Ability to understand the basic concept of AutoCAD software in civil engineering applications	5	C1			1	Clas Asse Quiz	essme	nt/
CO2	Ability to apply the knowledge to draw detail architectural and structural drawing of a residential building	1	C2			4	Clas Asse Quiz	essme	nt/
CO3	Ability to apply the knowledge to draw sectional view, plan view and elevation of various structures	1	C2			4	Clas Asse Quiz	essme	nt/

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

<u>Complex Engineering Problem (P)</u>:

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face to Face Learning							
Lecture (1.5 hours/week x 12 weeks)	18						
Class assessment (1 hours/week X10 weeks)	10						
Guided Learning							
Assignment Preparation (1.0 hours/week x 09 weeks)	09						
Independent Learning Individual learning (1-hour lecture \approx 1-hour	12						
learning) Preparation for quiz	06						
Assessment							
Quiz & Viva	05						
Total	60						

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACH	TEACHING SCHEDULE							
Week	Lectures	Topics	Assessments					
		Introduction to computer usage						
1	1	Introduction to CAD packages and computer aided drawing						
2	2		Class					
3	3	Drawing editing and dimensioning of simple objects	Assessment					
4	4							
5	5	Plan, elevations and sections of multi-storied						
6	6	buildings						
7		Mid Term Quiz	Quiz					
8	7	Reinforcement details of beams, slabs, stairs etc.						
9	8	Plan and section of septic tank						
10	9	Detailed drawings of roof trusses	Class					
11	10	0 Plans, elevations and sections of culverts, bridges and other hydraulic structures						
12	11	Drawings of building services						
13		Viva	Viva					

14	Final Quiz	Final Quiz							
ASSESSMENT STRATEGY									
Components	oms Taxonomy								
Class Assessment & Assignment	50%	CO1, CO2, CO3	C1,	C2					
Quiz & viva	50%	CO1, CO2, CO3	C1,	C2					
Total Marks	100%								
REFERENCE BOOKS									
1. Civil Engineerin	g Drawing by - Gurchara	n Singh & Subash Chan	dra						

Fall Semester L-1, T-II

COURSE IN	FORMATION		
Course Code Course Title	: CE 103 : Surveying and Spatial Information Engineering	Lecture contact hours Credit hours	: 3.00 : 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The purpose of this course is to introduce various surveying techniques for conducting land and hydrographic survey which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To understand the measurement techniques used in land and hydrographic surveying.
- To develop a deep understanding on techniques, skills and modern tools necessary for surveying.
- To gain knowledge on remote sensing, spatial measurement and spatial information management.
- To gain knowledge on highway/railway curve setting techniques.
- To understand the background concept of contour map production.

COURSE CONTENT

Introduction to Surveying, History of Surveying, Surveying Instruments and their uses, Sources of errors, Linear measurements, Chain surveying, Project survey, Route survey, Leveling, Calculation of area and volumes, Traverse survey, Contouring, Curve and curve ranging: transition curves, super-elevation and vertical curves, Trigonometric levelling, Principles and problems of tachometry. Introduction to remote sensing, use and application of remote sensing, Introduction to photogrammetric survey, Acoustic measurements and investigations, hydrographic operations.

COURSE OUTCOMES AND SKILL MAPPING													
No.	COURSE OUTCOMES (COs)			PRC	GRA	MM	E OU	TCO	MES	(POs)	1	
		PO1	P02	PO3	P04	PO5	P06	PO7	PO8	909	P010	P011	PO12
1	Ability to understand the working principles of various survey methods, equipment and tools for conducting land, Project and hydrographic survey and spatial information analysis	V											

2	Ability to explain the principles of various methods for curve settings and earth works calculation for highway/railway projects						
3	Ability to use different survey methods in solving engineering problems	\checkmark					
PO1: solution PO7: Comm	ram Outcomes (PO): Engineering knowledge, PO ons, PO4: Investigation, PO Environment and sustainab nunication, PO11: Project n RSE OUTCOMES AND O	05 : Mode ility, PO nanagem	ern tool usa 8: Ethics, I ent and fin	ge, PO PO9 : Inc ance, P	5: The endividual	ngine and to	er and society, eamwork, PO10 :
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	<u>م</u>	V	K	Assessment Methods
C01	Ability to understand the working principles of various survey methods, equipment and tools for conducting land, Project and hydrographic survey and spatial information analysis	1	C1			3	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to explain the principles of various methods for curve settings and earth works calculation for highway/railway projects	2	C2, C3			4,5	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Ability to use different survey methods in solving engineering problems	2	C2, C3			4	Class Test, Mid-term, Pop quiz, Final Exam

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

IEACHING LEAKNING SI KAIEG I							
Teaching and Learning Activities	Engagement (hours)						
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42						
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	15						
Independent Learning							
Individual learning (1-hour lecture \approx 1-hour learning)	36 22						
Preparation for tests and examination							
Assessment Continuous Assessment Final examination	2 3						
Total	120						
TEACHING METHODOLOGY							
Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)							

TEACHING SCHEDULE							
Week	Lectures	Topics	Assessments				
	1	Introduction to surveying	CT,				
2		History of Surveying, Surveying Instruments and their uses	Final exam				
	3	Tacheometry : introduction and applicability, equipment for tacheometry	_				
	4	Introduction to remote sensing	_				
2	5	Principle of stadia method, calibration of a tacheometer	_				
	6	Formulations for distance and elevation by tacheometry	_				
	7	Introduction to remote sensing					
3	8	Project survey	_				
	9	Use and application of remote sensing	_				
	10	Route survey	CT, Final				
4	11	Linear measurements	- Exam				
	12	Introduction to photogrammetric survey	_				
	13	Introduction to photogrammetric survey	_				
5	14	Introduction to photogrammetric survey	_				
	15	Trigonometric Levelling	_				
	16	Traverse survey	CT 2				
6	17	Traverse survey					
	18	Traverse survey	Final exam				
	19	Levelling					
7	20	Levelling					
	21	Levelling	_				
	22	Levelling					
8	23	Contouring					
	24	Contouring					
9	25	Different methods of curve setting for simple circular curve					

	26 Different types of curves, basic definitions of simple circular curve									
	27	Curves and curve se								
	28	Curves and curve se								
10	29	Solving problems o	Final exam							
10	30	Transition curve: ch equilibrium cant an	haracteristics, superelevat d cant deficiency	tion,						
_	31	Length of transition curve	curve, formulation of tra	ansition						
11	32	Calculation of area								
	33	Calculation of area								
	34	Calculation of area			Mid					
12	35	Solving problems o	n transition curve		Final exam					
	36	Solving problems o	n transition curve		-					
	37	Cubic parabola as v different types of ve	ertical curves, basic defi ertical curves	nitions,	-					
13	38	Solving problems o	n vertical curves							
	39	Acoustic measurem	ents and investigations							
	40	Acoustic measurem	ents and investigations							
14	41	Calculation of volu	me							
	42	Calculation of volu	me		-					
ASSES	SSMENT ST	RATEGY			<u> </u>					
Comp	onents	Grading	СО	Bloc	oms Taxonomy					
Contin Assess	ment									
•		40%	CO1, CO2, CO3	CO1, CO2, CO3 C1, C2,						
			CO 1	C1						
Final	Exam	60%	CO 2	C2,	C3					
			CO 3	C2,	C3					
Total N	Aarks	100%								

REFERENCE BOOKS

- 1. Surveying Volume I, II, III by B.C. Punmia (SI Units)
- A Textbook of Surveying by M.A. Aziz & Shahjahan
 Surveying and Levelling by N N Basak

Fall Semester L-1, T-II

COURSE IN	FORMATION		
Course Code Course Title	: CE 104 : Practical Surveying	Lecture contact hours Credit hours	: 3 weeks : 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The purpose of this course is to introduce various instruments of surveying and applying those in the field. This training will be useful for the students in professional field.

OBJECTIVE

- To orient the students with the use of various instruments of surveying and applying those in the field of survey
- To utilize the students' theoretical knowledge on surveying (CE-103) into practical fields
- To train the students to plan and execute survey work for any engineering project

COURSE CONTENT

Linear and angular measurement techniques; traverse surveying; leveling and contouring; curve setting; Trigonometric Survey; route survey; tacheometry; project surveying; modern surveying equipment and their applications.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	PO11	P012
1	Employ appropriate survey techniques for civil engineering works	\checkmark											
2	Analyze survey data to meet the objectives of field work		\checkmark										
3	Work effectively as an individual and also as a member of a team in survey field works									\checkmark			
Program	Outcomes (PO):					-							
PO1: Eng	gineering knowledge, PO	2: Pr	obler	n ana	lysis,	PO3 :	Desi	gn/de	evelop	omen	t of		

solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society,

PO7: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS							
COURSE	OUTCOMES AND G	DINERIC	SNILLS			1	
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	К	Assessment Methods
CO1	Employ appropriate survey techniques for civil engineering works	1	3			3	Daily Quiz/ Report/Final quiz/Viva
CO2	Analyze survey data to meet the objectives of field work	2	4			4	Daily Quiz/ Report/Final quiz/Viva
CO3	Work effectively as an individual and also as a member of a team in survey field works	9	3			4	Daily Quiz/ Report/Final quiz/Viva

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture (5 hours/week x 3 weeks)	15
Field Work (25 hours/week x 3 weeks)	75
Guided Learning	
Report preparation	10
Independent Learning	
Preparation for quiz & viva	5

Assessn								
Quiz &	viva				5			
Total	110							
TEACH	IING MET	HODOLOGY						
Lecture (PBL)	and Discuss	sion, Co-operative	and Collabo	rative Method, Pro	obler	n Based Learning		
TEACH	IING SCH	EDULE						
Week	Lectures	Topics				Assessments		
	1	Linear and angul	lar measurem	ent techniques				
	2	Route survey; Ca	alculation of	cut and fill volume	e			
1	3	Traverse surveyi	ng					
	4	Trigonometric su	urveying					
	5	Tacheometry sur	veying					
	6	Contouring						
	7	Curve Setting: S	imple Circula	ar Curve				
2	8	Curve Setting: C		Daily Quiz/ Report				
	9	House Setting						
	10	Hydrographic su						
	11							
	12		_					
3	13	Application of m GPS, Total statio		ving equipment's li etc.	ike			
	14		, 01 0					
	15							
	16	Field Test				Field Test		
4	17	Viva &Final Qui	Viva & Final Quiz					
ASSES	SMENT ST	RATEGY						
Compo	nents	Grading	СО		Blo	oms Taxonomy		
Daily Q	uiz & Repo	rt 50%	CO1, CO2, 0	CO3	3,4			
Field Te Peer Eva	st ,Viva & aluation	50%	CO1, CO2, 0	203	3,4			
Total M	arks	100%						

REFERENCE BOOKS

- Surveying Volume I, II, III by B.C. Punmia (SI Units)
 A Textbook of Surveying by M.A. Aziz & Shahjahan
 Surveying and Levelling by N N Basak

Spring Semester L-2, T-I

COURSE IN	FORMATION		
Course Code Course Title	: CE 200 : Details of Constructions	Lecture contact hours Credit hours	: 3.00 : 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course, students will be introduced to components of different civil engineering structures and construction practices. This hands-on training will be useful for the students in later studies and construction projects.

OBJECTIVE

- To impart knowledge on the basics of different types of components of a building, design loads, framed structure and load-bearing wall structure.
- To equip students with knowledge of various construction materials and their application in structures.
- To make the students efficient in the practical field understanding through site visits and technical sessions.

COURSE CONTENT

Types of building, components of a building, design loads, framed structure and load bearing wall structure; **foundations**: shallow and deep foundation, site exploration, bearing capacity of the soil, standard penetration test; **brick masonry**: types of brick, bonds in brickwork, supervision of brickwork, defects and strength on brick masonry, typical structures in brickwork, load bearing and non-load bearing walls, cavity walls, partition walls; **lintels and arches**: different types of lintels and arches, loading on lintels, construction of arches; **stairs**: different types of stairs, **floors**: ground floors and upper floors; roofs and roof coverings; **shoring**; **underpinning**; **scaffolding and formwork**; **plastering**, pointing, painting; distempering and whitewashing; **concrete**: cement, concrete construction, admixture; **sound insulation**: acoustics; **thermal insulation**; **house plumbing**: water supply and wastewater drainage; **thunder arrestor. Project site visit.**

COUR	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE			PR	OGR	AMN	AE O	UTC	OME	S (PC)s)		-
	OUTCOMES (COs)	POI	P02	P03	P04	PO5	P06	PO7	P08	P09	PO10	P011	P012
1	Understand the components of substructure and superstructure of a building, properties of construction materials, design	\checkmark											

	loads, framed structure and load- bearing wall structure									
2 3	structureUnderstand thefinishing andformwork of abuilding, heat andthermal insulation,and water supply andwastewater drainagesystemRecognize differentaspects ofconstructionmaterials and work	√					√			
	through field visits									
Drogre	and teamwork am Outcomes (PO):									
Enviro Comm	investigation, PO5 : Moder nment and sustainability, unication, PO11 : Project	PO8: E manage	Ethics, PO ement and	9: Indiv finance	vidual a	nd tear	nwork, P	D10 :		
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K		Assessment Methods		
CO1	Understand the components of substructure and superstructure of a building, properties of construction materials, design loads, framed structure and load- bearing wall structure	1	C1	-		1	Class Assessment/Report/ Quiz/Viva		/	
CO2	Understand the finishing and formwork of a building, heat and thermal insulation, and water supply and wastewater drainage system	1	C1	-		1		Asses: rt/Quiz		

CO3	Recognize different aspects of construction materials and work through field visits and teamwork	9	C2	-		1,6	Report/Poster Presentation
-----	---	---	----	---	--	-----	-------------------------------

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture (2 hours/week x 9 weeks)	18
Class assessment (1 hours/week X9 weeks)	9
Site visit (3 hours/week X2 weeks)	6
Guided Learning	
Assessment and Report Preparation (1.0 hours/week x 9 weeks)	9
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	9
Preparation for quiz	4
Assessment	
Quiz & Viva	3
Poster Presentation	1
Presentation	1
Total	60
TEACHING METHODOLOGY	

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

Week	Lectures	Topics		Assessments			
1	1	Introducti	on to Building				
2	2	Floors, Ro	oofs and Stairs				
3	3	Brick Mas	sonry	Class Assessment/Report/Quiz			
4	4	Plastering and Arche	, Painting, Pointing; Lintels	Viva			
5	5	Cement, c admixture	concrete construction and				
6		Site Visit		Presentation			
7	6	Shoring; U and Form	Underpinning; Scaffolding work	Class Assessment/Report/Quiz/ Viva			
8		Mid Quiz		Quiz			
9	7	Introducti Investigat	on to Foundations and Soil ion				
10	8		mbing, water supply and er drainage	Class Assessment/Report/Quiz/ Viva			
11	9	Sound ins Thermal a	ulation, Thermal insulation,				
12		Site visit		Presentation			
13		Final Quiz	Z	Quiz			
14		Presentati	on &Viva	Presentation			
ASSESS	SMENT ST	RATEGY					
Compo	nents	Grading	СО	Blooms Taxonomy			
Class Assessm	ent/Report	30%	CO1, CO2	C1			
Quiz &	Viva	50%	CO1, CO2	C1			
Presenta	tion	20%	CO3	C2			
Total Ma	arks	100%					
REFER	ENCE BOO	OKS					
2. Build 3. Build	ing Construe	ction by – I ction Engin	Sushil Kumar Dr. B.C. Punmia eering by Gurcharan Singh by T W Love				

6. BDA Guide to Successful Brickwork" by the Brick Development Association.

7. Concrete Construction, by Ken Nolan

8. Formwork for Concrete by M.K. Hurd, Fifth Edition,

- 9. New Scaffolding Guidance TG20:08 Guide to Good Practice for Scaffolding with Tube and Fittings NASC (National Access and Scaffolding Confederation), UK
- 10. Plumbing a House: For Pros by Pros by Peter Hemp
- 11. Construction Drawings and Details for Interiors: Basic Skills, 2nd Edition" by Rosemary Kilmer and W.Otie Kilmer
- 12. Sound Insulation by Carl Hopkins
- 13. Popular Mechanics Complete Home How-to by Albert Jackson, David Day
- 14. PWD manual on house construction and plumbing

COURSE INFORMATION		
Course Code : CE 201	Lecture contact hours	: 3.00
Course Title : Engineering Materials	Credit hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a basic course for the students to learn the properties, manufacturing process and uses of construction materials. The course is intended to provide necessary knowledge to the students which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To gain knowledge on the properties of various aggregates and construction materials.
- To be able to identify the suitability of engineering materials for different types of construction works.
- To develop an understanding on manufacturing process of bricks, cement etc.
- To design concrete mix by appropriate methods.

COURSE CONTENT

Properties and uses of aggregates, brick, cement; sand, lime; concrete; concrete mix design; admixtures; wood structures and properties; shrinkage and seasoning; treatment and durability; mechanical properties; wood products; basic property of FRP composites and available FRP composite products; steel; aluminum; introduction to geo-textiles; definition of stress and strain; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modelling for prediction of creep behavior; ferro-cement: advantages and uses; corrosion and prevention of steel in RC structures; offshore structures; application of nano technology in cement and concrete; introduction to high performance material (ie., green building materials, ECC etc).

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE			l	PROC	GRAN	MME	OUT	COM	IES (I	POs)		
((OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Identify the properties and suitability of engineering materials for different types of	\checkmark											

	construction works											
2	Understand the production process of engineering materials (Bricks, Cement etc.) and their uses in Bangladesh.	~	/									
3	Use appropriate method to Undertake basic design calculations for concrete mix.	1	/									
	Program Outcomes (PO):											
solut: PO7: Com	 PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 											
No.	Course Outcomes	Corresponding POs		Bloom's Taxonomy	(monour t	4	A	;	K		Assessment Methods	
CO1	Identify the properties and suitability of engineering materials for different types of construction works	1		C2				3,4	1	term,	Test, N nment, Exam	
CO2	Understand the production process of engineering materials (Bricks, Cement etc.) and their uses in Bangladesh.	2		C2				4,	5	term,	Test, N nment, Exam	
CO3	Use appropriate method to	2		C3		1,2,3		5,6	5	Class term,	Test, I	Mid-

Undertake basic design			Assignment,Final Exam
calculations for			
concrete mix.			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42						
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	15						
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	36 22						
Assessment Continuous Assessment Final examination Total	2 3 120						
TEACHING METHODOLOGY							
Lecture and Discussion, Tutorial, Problem Based Learning (PBL)							

TEACH	HING SCH	EDULE			
Week	Lectures	Topics	Assessments		
	1	Properties of Aggregates	CT/Mid/		
1	2	Uses of Aggregates	Assignment/		
	3	Properties and Uses of Aggregates	Term Final		
	4	Bricks- Quality, Constituents, Characteristics etc.	-		
2	5	Brick- Tests, Types, Classifications, Use etc.	-		
	6	Brick- Manufacturing Process, Kilns etc.	-		
	7	Cement- Properties	-		
3	8	Cement- Different types and characteristics	-		
	9	Cement- Manufacturing process	-		
	10	Sand- Source, Types, FM, Classification	CT/Mid/		
4	11	Sand- Classification, Use, test and bulking	Assignment/		
	12	Lime- Properties, Source, Production, Classification	- Term Final		
	13	Lime- Hydraulicity, Calcination, Slaking, Use	-		
5	14	Mortars- Types, Components, Functions, Properties, Uses			
	15	Mortars- Methods of mixing, Preparation, Types, Varieties, Curing etc.			
	16	Concrete- Properties, Ingredients, Related Terminologies, Types	CT/Mid/ Assignment/		
6	17	Concrete – Workability, Segregation , Bleeding, Strength, Porosity, Aggregate properties	Term Final		
	18	Concrete- Mixing, Handling, Placing, Effect, Chemical reaction			
	19	Concrete- Strength, Factors, Permeability, Curing, Testing			
7	20	Concrete- Advances in concrete technology, Special types of concrete			
	21	Basic property of FRP composites and available FRP composite products			
8	22	Basic property of FRP composites and available FRP composite products			
0	23	Steel; Aluminum	1		

	24	Stress and strain; plane stress and strain condition;						
	25	Identification of strain components of elastic, elasto- plastic and elasto-visco-plastic materials						
9	26	Time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior						
	27	Ferro-cement: advantages and uses						
	28	Ferro-cement: advantages and uses						
10	29	Corrosion and prevention of steel in RC structures; Offshore structures						
	30	Corrosion and prevention of steel in RC structures; Offshore structures						
	31	Material for ground improvement						
11	32	Application of nano technology in cement and concrete						
	33	Introduction to high performance material (ie., green building materials, ECC etc).						
	34	Concrete Mix Design- Principles, Material requirement, Workability, Quality Control	CT/Mid/ Assignment/					
12	35	Concrete Mix Design-Design of low and medium strength concrete, Design of high strength concrete	Term Final					
	36	Concrete Mix Design- Light weight concrete, Mass concrete, High density concrete, Fly Ash Cement concrete,						
	37	Concrete Mix Design- Design of concrete mixes according to British and American standard.						
13	38	Admixtures- Properties, Effectiveness, Functions						
	39	Admixtures- Different types and uses						
	40	Wood structures and properties; shrinkage and seasoning						
	41	Wood -treatment and durability						
14	42	Wood- mechanical properties; wood products						

ASSESSMENT ST	ASSESSMENT STRATEGY								
Components	Grading	СО	Blooms Taxonomy						
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2,CO3	C2, C3						
		CO 1	C2						
Final Exam	60%	CO 2	C2						
		CO 3	C3						
Total Marks	100%								
REFERENCE BOOKS									
 Engineering Materials by - M.A. Aziz Building Materials by Gurcharan Singh 									

3. A Text book of Engineering Materials by G.J. Kulkarni (6th Edition)

4. Engineering Materials Technology: Structures, Processing, Properties, and Selection

(5th Edition) by James A. Jacobs and Thomas Kilduff

Spring Semester L-2, T-I

Course Code : CE 203 Lecture contact hours : 3.00	COURSE IN	
Course Title: Engineering Geology and GeomorphologyCredit hours: 3.00		

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides engineers the background knowledge of geologic characterization and the evaluation of the earth's surface for engineering-issues. It also aims to shed light on landforms, land forming processes, and landscape evolution. However, the intent is to develop a fundamental understanding of geologic-issues from an engineering point of view.

OBJECTIVE

- To have through understanding of rocks as an engineering material.
- To have profound knowledge on the fluvial processes and landforms.
- To comprehend the technical issues related to geological structures and tectonics.

COURSE CONTENT

Petrology: Igneous rock, metamorphic rock, sedimentary rock. **Mineralogy:** Rock and soil minerals. **Soil**: soil classification and transportation methods. **Structural geology:** Folds, faults, joints, doms and basin. **Earthquake and seismotectonic aspect:** Different types of earthquake waves and effects; **Geomorphic processes**; **Runoff and runoff relations**; **Valleys and valley formation**; **Fluvial processes and landforms**: Erosion, transportation and deposition; river dynamics, channel patterns and the basin; **Geology of Bangladesh:** Geology and geo-morphological aspect.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE	PRC	OGRA	MM	E OU	TCO	MES	(POs)		-			
	OUTCOMES (COs)	P01	P02	PO3	P04	P05	P06	PO7	PO8	909	PO10	P011	P012
1.	Ability to understand the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.	V											
2.	Ability to understand the earthquake												

zoning map of Bangladesh v </th <th></th> <th>mechanism and</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		mechanism and						
Bangladesh Imagladesh Imagladesh <thimagladesh< th=""> Imagladesh <thimagladesh< th=""></thimagladesh<></thimagladesh<>								
3 Ability to comprehend the general trends in geo-morphological formations and its importance in riverine areas of Bangladesh i		0 1						
general trends in geo-morphological formations and its importance in riverine areas of BangladeshIII <td>3</td> <td><u> </u></td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td></td>	3	<u> </u>	\checkmark					
geo-morphological formations and its importance in riverine areas of BangladeshIIIIIProgram Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learningOUTCOMES AND GENERIC SKILLSOUTCOMES AND GENERIC SKILLSNo.Course OutcomesSolutions, PO4: Investigation, PO5: Course OutcomesNo.Course OutcomesSolutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, 		comprehend the						
formations and its importance in riverine areas of Bangladesh Image: Construction of Solutions, PO3: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes Image: Course of Co								
importance in riverine areas of BangladeshImage: Constraint of the second								
riverine areas of BangladeshImage: Constraint of the second seco								
Bangladesh Imagladesh Imagladesh <thimagladesh< th=""> Imagladesh <thimagladesh< th=""></thimagladesh<></thimagladesh<>		1						
Program Outcomes (PO): POI: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes off a a a state state No. Course Outcomes off a c c x y state No. Course Outcomes off a c c x y state No. Course Outcomes off a c c x y state No. Course Outcomes off a c c x y state Col Ability to a c c c x y state Col Ability to a c c a a class Test, Mid-term, Final Exam Mid-term, Final Exam final Exam Col Ability to a c c								
PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes and provided by a statistication of solutions of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solutions of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statistication of solits and rocks. and provided by a statis	D	8						
solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes	-							
PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PÓ10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes Image: Solution of the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of soils and rocks. Image: Solution of the landforms, hydrogeology, and mineralogical compositions of the landforms, hydrogeology, and hydrogeolog								
Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS No. Course Outcomes So					0		0	
COURSE OUTCOMES AND GENERIC SKILLSNo.Course OutcomesImage: Source of Sou								
No.Course Outcomes $\stackrel{go}{JO}_{O}$ $\stackrel{go}{L}_{U}$ <						012. L	lie-long	learning
Ability to understand the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.1C13C02Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C233	COU	RSE OUTCOMES A	ND GENER	IC SKILL	S			
Ability to understand the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.1C13C02Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C233								
Ability to understand the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.1C13C02Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C233			ling					
Ability to understand the dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.1C13C02Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C233	No.	Course Outcomes	onc	s ny				Jen
Ability to understand the dynamics of landforms, 			dsa	m, noi				nssn
Ability to understand the dynamics of landforms, 			SC	lool				sse leth
understand the dynamics of landforms, hydrogeology, and 			Ŭ Ă	T, B	Р	A	K	Ϋ́Α
CO1dynamics of landforms, hydrogeology, and mineralogical compositions of soils and rocks.1C13AC02Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C233		Ability to						
CO1Iandforms, hydrogeology, and mineralogical compositions of soils and rocks.1C1-3Class Test, Mid-term, Final ExamCO2Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamCO3Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C23								
COIhydrogeology, and mineralogical compositions of soils and rocks.1C13Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamCO2Ability to comprehend geomorphological systems and riverine areas of Bangladesh.1C13Class Test, Mid-term, Final Exam		•						
mineralogical compositions of soils and rocks.Image: Composition of soi	CO1	,	1	C1	-	-	3	
compositions of soils and rocks.Image: Composition of soils and rocks.								
soils and rocks.Image: Soils and rock								
Ability to understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamCO2Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C23		-						
CO2understand the earthquake mechanism and zoning map of Bangladesh1C13Class Test, Mid-term, Final ExamCO3Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C231								
CO2earthquake mechanism and zoning map of Bangladesh1C13Mid-term, Final ExamCO3Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C23A		5						Class Test,
CO2mechanism and zoning map of Bangladesh1C1-3Final ExamC03Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C2-3Final Exam								
CO2zoning map of Bangladesh1CI13Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C2-3	CO2	-	1	C1			2	Final Exam
BangladeshImage: Second systems and riverine areas of Bangladesh.2C2-3	02		1	CI	-	-	5	
CO3Ability to comprehend geomorphological systems and riverine areas of Bangladesh.2C2-3								
CO3 comprehend geomorphological systems and riverine areas of Bangladesh. 2 C2 3								
CO3 comprehend geomorphological systems and riverine areas of Bangladesh. 2 C2 3		Ability to						
systems and riverine areas of Bangladesh.								
systems and riverine areas of Bangladesh.	CO3		2	C^{2}		_	3	
Bangladesh.	005		<i>L</i>		-	-	5	
		Bangladesh.						
Knowledge Profile (K):	Knov	vledge Profile (K):						

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY								
Teaching and	l Learning Activities	Engagement (he	ours)					
Face to Face	e Learning	42						
Lecture (3 ho	ours/week x 14 weeks)	42						
Guided Leas Tutorial/ Ass weeks)	rning ignments (3 hours/week x 5	-						
Independen	t Learning	42						
	arning (1-hour lecture \approx 1-hour	21						
learning) Preparation f	or tests and examination	21						
Assessment								
Continuous A		2						
Final examin	ation	3						
Total		131						
TEACHING	G METHODOLOGY							
Lecture and I	Discussion, Tutorial, Problem Based	Learning (PBL)						
TEACHING	S SCHEDULE							
Lecture	Торіс		Remarks					
Week-1								
Lecture-1	Introduction to Geomorphology		CT-1, Final					
Lecture-2	Introduction to Geology	CT-2, Final						
Lecture-3	Introduction to Mineralogy							
Week-2								
Lecture-4	Introduction to Geomorphology		CT-1, Final					

Lecture-5	Introduction to Mineralogy	CT-2, Final
Lecture-6		
Week-3		
Lecture-7	Geomorphologic processes	Final
Lecture-8	Introduction to rock and different rock forming process	Mid exam
Lecture-9		
Week-4		
Lecture-10	Geomorphologic processes	Final
Lecture-11	Rock cycle	Mid exam
Lecture-12	Introduction to soil	Final
Week-5		
Lecture-13	Runoff and runoff relations	
Lecture-14	Introduction to soil and transportation methods	Final
Lecture-15		
Week-6		
Lecture-16	Runoff and runoff relations	Final
Lecture-17	Structural geology	
Lecture-18		
Week-7		
Lecture-19	Runoff and runoff relations	
Lecture-20	Structural geology	
Lecture-21		
Week-8		
Lecture-22	River valley formation	CT-3, Final
Lecture-23		
Lecture-24	Earthquake mechanism and related hazards	Final
Week-9		
Lecture-25	River transportation processes	CT-3, Final
Lecture-26		
Lecture-27	Structural geology	Final
Week-10		
Lecture-28	River transportation processes	CT-3, Final

Lecture-29		
Lecture-30	Earthquake mechanism, wave types and related hazards	
Week-11		
Lecture-31	Drainage Pattern, Quantitative analysis of stream network	
Lecture-32		
Lecture-33	Earthquake mechanism, wave types and related hazards	
Week-12		
Lecture-34	Fluvial process and landforms	
Lecture-35		- Final
Lecture-36	Geological formation of Bangladesh	1 mai
Week-13		
Lecture-37	Fluvial process and landforms	
Lecture-38		
Lecture-39	Geological formation of Bangladesh	
Week-14		
Lecture-40	Review	
Lecture-41		
Lecture-42		

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C1, C2
Final Exam	60%	CO 1, CO2, CO3	C1, C2
Total Marks	100%		

REFERENCE BOOKS

1. Geology for Civil Engineers: A.C. McLean & C.D. Gribble

2. Foundations of Engineering Geology: Tony Waltham

3. Fundamentals of Geomorphology: Richard John Huggett

4. Key Concept in Geomorphology: Paul R. Bierman & David R. Montgomery

COURSE INFO	RMATION		
Course Code Course Title	: CE 205 : Numerical Methods for Engineering	Lecture contact hours Credit hours	: 3.00 : 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will be given basic knowledge on various numerical solution techniques and computations. This will be useful for the students in a later stage of their study, as well as professional life.

OBJECTIVE

- To gain knowledge on the basic computations on numerical problems.
- To become skilled in using numerical solution techniques.
- To learn the schemes of reducing the numerical errors in basic computations.

COURSE CONTENT

Fundamental of numerical computing (e.g. numericalmodel, convergence, accuracy and stability) and error estimation; system of liner equations (Cramer's rule, Gaussian Elimination,LU factorization, Error analysis for liner systems, Iterative methods-Jacobi Method, Gauss-Seidel iteration, convergence of Iterative methods; Eigen Value Problems); Solving non-liner equations (root findings-Bi-section method, Newton-Raphson Method, Method of False Position); Interpolations (Polynomial interpolation, Piecewise/cubic spline interpolation Lagrange interpolation, and Chebyshev interpolation); Numerical differentiation and Integration(trapezoid,Romberg, Gauss, adaptive quadrature); Numerical solution of Ordinary Differential Equation (Initial Value Problem: Euler Method, Modified Euler Method, Range-Kutta Method); Numerical solution of Ordinary Differential Equation (Boundary Value Problem: Finite difference method and Shooting method, convergence and stability); Least square approximation (parameter estimation and curve fitting); Optimization Method; Numerical solution of Partial Differential Equations.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE			PF	ROGR	AMN	IE O	UTC	OME	S (PC	Ds)		
	OUTCOMES (COs)		- >							-	0	-	0
		01	02	03	04	05	90	0	08	60	01	01	PO12
		Р	P	Р	Ч	Р	P	Р	P	P	Р	Р	Р
1	Ability to												
	understand the												
	theoretical workings	N	N										
	of various numerical												

	techniques and to solve the engineering problems.						
2	Ability to analyze the distinctive characteristics of various numerical techniques and the associated error measures.		~				
3	Ability to apply the principles of various numerical techniques to solve distinctive numerical problems.						~
PO1:	ram Outcomes (PO): Engineering knowledg						
PO7 :	ions, PO4 : Investigation : Environment and sustant munication, PO11 : Proj	ainability, I	PO8: Ethic	s, PO9 : Inc	lividual	and tear	mwork, PO10 :
COU	URSE OUTCOMES A	ND GENE	RIC SKIL	LLS	-		
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	ď	A	К	Assessment Methods
CO1	Ability to understand the theoretical workings of various numerical techniques and to solve the engineering problems.	1, 2	C2/C3	1		1, 2	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to analyze the distinctive characteristics of	3	C4/C5	2,4		3	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Ability to apply the principles of various numerical techniques to solve distinctive	3, 12	C3	3		3, 4	Class Test, Mid-term, Pop quiz, Final Exam

numerical			
problems.			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

TEACHING LEARNING STRATEGY

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities Engagement (hours) **Face to Face Learning** 42 Lecture (3 hours/week x 14 weeks) **Guided Learning** 15 Tutorial/ Assignments (3 hours/week x 5 weeks) **Independent Learning** Individual learning (1-hour lecture \approx 1-hour 36 learning) 22 Preparation for tests and examination Assessment Continuous Assessment 2

Total

Final examination

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

3

120

TEACH	HING SCH	EDULE	
Week	Lectures	Topics	Assessments
	1	Fundamentals of numerical computing (e.g. Numerical model, convergence, accuracy and stability)	CT/ Assignment-1
1	2	Fundamentals of numerical computing (e.g. Numerical model, convergence, accuracy and stability)	-
	3	Solving non-linear equations (Root Findings- Method of False position)	-
	4	Interpolations (Polynomial interpolation, Piecewise/cubic spline interpolation Lagrange interpolation, and Chebyshev interpolation)	-
2	5	Interpolations (Polynomial interpolation, Piecewise/cubic spline interpolation Lagrange interpolation, and Chebyshev interpolation)	-
	6	Error estimations and optimization methods	_
	7	Error estimations and optimization methods	_
3	8	Fundamentals of Statistical Decision Making	_
	9	Fundamentals of Statistical Decision Making	-
	10	Fundamentals of Statistical Decision Making	CT/
4	11	Evidence-Based Observational Decision Making	Assignment-2
	12	Evidence-Based Observational Decision Making	_
	13	Evidence-Based Observational Decision Making	-
5	14	Drawing Inferences from Sample Data	-
	15	Drawing Inferences from Sample Data	-
	16	Drawing Inferences from Sample Data	Mid Term/
6	17	Drawing Inferences from Sample Data	Assignment-3
	18	Drawing Inferences from Hypotheses Testing	-
	19	Drawing Inferences from Hypotheses Testing	
7	20	Drawing Inferences from Hypotheses Testing	-
	21	Drawing Inferences from Hypotheses Testing	
8	22	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	

	23	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	
	24	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	-
	25	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	-
9	26	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	-
	27	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	-
	28	Numerical differentiation and Integration (Trapezoid, Romberg, Gauss adaptive quadrature)	-
10	29	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	
	30	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	
	31	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	
11	32	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	
	33	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	
12	34	Numerical solution of Ordinary Differential Equation (Initial Value Problems: Euler Method, Modified Euler Method & Boundary value problem: Finite Difference Method and Shooting Method, Convergence and Stability)	CT/ Assignment-4

Total M	Iarks		100%			
				CO 3	C3	
Final E	Exam		60%	CO 2	C4, 0	C5
				CO 1	C2,	C3
(Class a	assignments, rm/ Active (/ CT/	40%	CO1, CO2, CO3	C2, 0	C3, C4, C5
Compo Continu	ious Assessi	ment	Grading		B100	oms Taxonomy
	SMENT ST	INAIÉ	[СО	Dlas	ma Tavanamy
ACCEC	CMENT C	-				
	42	Nume Equat		Partial Differentiation		
14	41	Equat Modif proble Metho	ion (Initial Value fied Euler Metho em: Finite Differ od, Convergence	•	oting	
	40	Equat Modif proble Metho	ion (Initial Value fied Euler Metho em: Finite Differ od, Convergence		-	
	39	Nume Equat		Partial Differentiation		
13	38	Equat Modif proble	ion (Initial Value fied Euler Metho	Ordinary Differential Problems: Euler Meth d & Boundary value ence Method and Shoo and Stability)		
	37	Equat Modif proble Metho	ion (Initial Value fied Euler Metho em: Finite Differ od, Convergence	• /	-	
	36	Equat	ions	Partial Differentiation		
	35	Equat Modif proble	ion (Initial Value fied Euler Metho	Ordinary Differential Problems: Euler Meth d & Boundary value ence Method and Shoo and Stability)	-	

REFERENCE BOOKS

- 1. Statistics and Data Analysis for Engineers and Scientists by Tanvir Mustafy, Md. Tauhid Ur Rahman
- 2. Numerical Mathematical Analysis by James b. Scarborough
- 3. Introductory Methods of Numerical Analysis by S.S. Sastry
- 4. Numerical Methods for Scientific And Engineering Computation by- Jain, Iyengar, Jain
- 5. Numerical Methods using MATLAB (4th Edi.) by John H Mathews and Kurtis K Fink
- 6. Fundamentals of Engineering Numerical Analysis by Parviz Moin (2010)

CO	URSE INFO	RMATI	ON										
Cou	rse Code	: CE 208				Lect	ture c	ontac	t hou	rs :	3.00		
Cou	rse Title	: Quantit	y Su	rveyiı	ng	Cree	dit ho	urs		:	1.50		
PRE	E-REQUISIT	TE											
Non	e												
CUI	RRICULUM	STRUC	CTUI	RE									
Outo	come Based E	Educatior	n (OE	BE)									
SYN	NOPSIS/RAT	FIONAL	Έ.										
of v	course is a h arious civil e essional field	ngineeri	ng in										
OBJ	JECTIVE												
• [To gain know	ledge on	the l	oasics	s of e	stima	tion o	of dif	ferent	types	of struc	tures.	
CO	URSE CONT	TENT											
of re unde of sl	ding: estimati esidential bui erground wate ab culvert; co URSE OUT	ilding; es er reserve omputer a	stima oir; es aided	tion stimat quan	and o tion a ntity e	costin and co estima	ng of osting ation;	septi of re cons	c tan tainin	k; esti g wall;	mation estima	and cost tion and c	ting of costing
No	COURSE								UTC	OMES	(POs)		_
	OUTCOME (COs)	ES IOA	PO2	PO3	P04	PO5	PO6	PO7	PO8	604	P010	POI1	P012
1	Summarize	e .											
	the total amount of earthwork required for road construction												
2	Estimate the total materia and cost required for different components of a residential building, different cive engineering structures	al · √ vil											

		г											
	such as												
	culvert,												
	septic tank,												
	water reservoir and												
	retaining wall.												
	Work												
3	effectively as an individual and also as a member of a team in checking the market price and quality assessment of different construction									\checkmark			
	materials.												
D D	A		<u> </u>										
	ram Outcomes		-										
PO1:	: Engineering ki	nowle	dge,										
PO1: soluti	: Engineering ki ions, PO4 : Inve	nowle stigat	dge, ion, l	PO5 :	Mode	rn to	ol us	sage, I	PO6	: The	engineer	and soci	iety,
PO1: soluti PO7:	: Engineering ki ions, PO4 : Inve : Environment a	nowle stigat	dge, ion, l stain	PO5 : abilit	Mode y, PO	rn to 8: Etl	ol us hics,	sage, 1 PO9	PO6 : : Ind	: The o	engineer l and tea	and soci mwork,	iety, PO10 :
PO1: soluti PO7: Com	: Engineering ki ions, PO4 : Inve : Environment a munication, PO	nowle stigat and su 11: Pa	dge, ion, 1 stain rojec	PO5: abilit abilit	Mode y, PO nageme	rn to 8: Etl ent a	ol us hics, nd fi	sage, 1 PO9 nance	PO6 : : Ind	: The o	engineer l and tea	and soci mwork,	iety, PO10 :
PO1: soluti PO7: Com	: Engineering ki ions, PO4 : Inve : Environment a	nowle stigat and su 11: Pa	dge, ion, 1 stain rojec	PO5: abilit abilit	Mode y, PO nageme	rn to 8: Etl ent a	ol us hics, nd fi	sage, 1 PO9 nance	PO6 : : Ind	: The o	engineer l and tea	and soci mwork,	iety, PO10 :
PO1: soluti PO7: Com	: Engineering ki ions, PO4 : Inve : Environment a munication, PO	nowle stigat nd su 11: Pr MES	dge, ion, 1 stain rojec	PO5: abilit abilit	Mode y, PO nageme	rn to B: Etl ent an C SK	ol us hics, nd fi	sage, 1 PO9 nance	PO6 : : Ind	: The o	engineer l and tea	and soci mwork,	iety, PO10 :
PO1: soluti PO7: Com	Engineering kr ions, PO4 : Inve Environment a munication, PO IRSE OUTCO Course Outcomes	nowle stigat nd su 11: Pr MES	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI	rn to B: Etl ent an C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6 : : Ind	: The (ividua) 12: L	engineer l and tea	and soci imwork, learning	iety, PO10 :
PO1: soluti PO7: Com	Engineering kr ions, PO4 : Inve Environment a munication, PO IRSE OUTCO Course Outcomes Summariz e the total amount of earthwork required for road constructio	nowle stigat nd su 11: Pr MES	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI	rn to B: Etl ent an C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: >, PO	: The o ividua 012: L	engineer l and tea ife-long	and soci imwork, learning	iety, PO10 :
PO1: soluti PO7: Comi COU	Engineering kr ions, PO4 : Inve Environment a munication, PO IRSE OUTCO Course Outcomes Summariz e the total amount of earthwork required for road constructio n.	Corresponding	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI s . unoola Moola	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: >, PO	: The o ividua 012: L	engineer l and tea ife-long Class Assessm	Assessment Assessment Methods Methods	iety, PO10 :
PO1: soluti PO7: Comi COU	Engineering kr ions, PO4 : Inve Environment a munication, PO IRSE OUTCO Course Outcomes Summariz e the total amount of earthwork required for road constructio	Corresponding	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI s . unoola Moola	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: >, PO	: The o ividua 012: L	engineer l and tea ife-long Class Assessm	Assessment Assessment Methods Methods	iety, PO10 :
PO1: soluti PO7: Comi COU	 Engineering kristens, PO4: Investions, PO4: Investions, PO Environment at munication, PO JRSE OUTCO <l< td=""><td>Corresponding</td><td>dge, ion, i stain rojec ANI</td><td>PO5: abilit abilit</td><td>Mode y, PO nagemo NERI s . unoola Moola</td><td>rn to 3: Etl ent au C SK</td><td>ool us hics, nd fi XILI</td><td>sage, 1 PO9 nance 2S</td><td>PO6: : Ind: >, PO</td><td>∴ The o ividua 012: L ,6</td><td>engineer l and tea ife-long Class Assessm</td><td>Assessment Assessment Methods Methods</td><td>iety, PO10:</td></l<>	Corresponding	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI s . unoola Moola	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: >, PO	∴ The o ividua 012: L ,6	engineer l and tea ife-long Class Assessm	Assessment Assessment Methods Methods	iety, PO10 :
PO1: soluti PO7: Comi COU	 Engineering kristens, PO4: Investions, PO4: Investions, PO Environment at munication, PO JRSE OUTCO JRSE OUTCO JRSE OUTCO JRSE OUTCO Summarize e the total amount of earthwork required for road constructio n. Estimate the total material 	Corresponding	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI s . unoola Moola	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: :, PO	∴ The o ividua 012: L ,6	engineer l and tea ife-long Class Assessm z Class	Assessment Assessment Methods Methods	iety, PO10: ort/Qui
PO1: soluti PO7: Com COU	 Engineering kristens, PO4: Investions, PO4: Investions, PO Environment a munication, PO JRSE OUTCO JRSE OUTCO JRSE OUTCO JRSE OUTCO Summarizee the total amount of earthwork required for road constructio n. Estimate the total material 	nowle stigat ind su 11 : Pr MES Sourcesbouding 1	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI ° . unoola R C2	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: :, PO	: The o ividua)12: L ≫	engineer l and tea ife-long Class Assessm z Class	and soci imwork, learning Wethods Methods ment/Rep	iety, PO10: ort/Qui
PO1: soluti PO7: Com COU	 Engineering kristens, PO4: Investions, PO4: Investions, PO Environment at munication, PO JRSE OUTCO JRSE OUTCO JRSE OUTCO JRSE OUTCO Summariz e the total amount of earthwork required for road constructio n. Estimate the total material and cost 	nowle stigat ind su 11 : Pr MES Sourcesbouding 1	dge, ion, i stain rojec ANI	PO5: abilit abilit	Mode y, PO nagemo NERI ° . unoola R C2	rn to 3: Etl ent au C SK	ool us hics, nd fi XILI	sage, 1 PO9 nance 2S	PO6: : Ind: :, PO	: The o ividua)12: L ≫	engineer l and tea ife-long Class Assessm z Class Assessm	and soci imwork, learning Wethods Methods ment/Rep	iety, PO10: ort/Qui

	component s of a residential building, different civil engineerin g structures such as culvert, septic tank,					
	water reservoir and retaining wall.					
CO3	Work effectively as an individual and also as a member of a team in checking the market price and quality assessment of different constructio n materials.	9	C3		6	Project (Market Survey)

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACH	HING LEA	RNING STRATEGY	Ľ					
Teachin	g and Learr	ning Activities	Engagement (hours)					
Face to	Face Lear	ning						
		eek x 11 weeks) hours/week X11	22 11					
Assessn	Guided Learning Assessment Preparation (1.0 hours/week x 11 weeks)		11					
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning) Preparation for quiz		(1-hour lecture \approx 1-	08 04					
Assessn	nent							
Quiz			03					
Presentation			01					
Total			60					
TEACH		THODOLOGY						
TEACH Lecture (PBL)		sion, Co-operative and	d Collaborative Method, Problem I	Based Learning				
TEACH Lecture (PBL)	and Discus	sion, Co-operative and		Based Learning Assessments				
TEACH Lecture (PBL) TEACH	and Discus HING SCH	sion, Co-operative and EDULE Topics	d Collaborative Method, Problem I	-				
TEACH Lecture (PBL) TEACH Week	and Discus HNG SCH Lectures	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp	d Collaborative Method, Problem I on for roadway, earthwork oot levels	-				
TEACH Lecture (PBL) TEACH Week	and Discus HNG SCH Lectures	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for reside	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied	Assessments Class Assessment/				
TEACH (PBL) TEACH Week 1 2	and Discus HNG SCH Lectures 1 2	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for reside	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications,	Assessments Class				
TEACH Lecture (PBL) TEACH Week 1 2 3	and Discus HNG SCH Lectures 1 2 3	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential building.	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications,	Assessments Class Assessment/				
TEACH (PBL) TEACH Week 1 2 3 4	and Discus HNG SCH Lectures 1 2 3 4	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential building.	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications,	Assessments Class Assessment/				
TEACH (PBL) TEACH Week 1 2 3 4 5	and Discus HNG SCH Lectures 1 2 3 4	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for resider residential building. costing of residential	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building	Assessments Class Assessment/ Report				
TEACH (PBL) TEACH Week 1 2 3 4 5 6	and Discus HNG SCH Lectures 1 2 3 4 5	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential residential building. costing of residential Mid Quiz	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building	Assessments Class Assessment/ Report				
TEACH (PBL) TEACH Week 1 2 3 4 5 6 7	and Discus IING SCH Lectures 1 2 3 4 5 6	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential residential building. costing of residential Mid Quiz Estimation of RCC f	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building for footing, column for beam	Assessments Class Assessment/ Report				
TEACH Lecture (PBL) TEACH Week 1 2 3 4 5 6 7 8	and Discus HNG SCH Lectures 1 2 3 4 5 6 7	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential residential building, costing of residential Mid Quiz Estimation of RCC for Estimation of RCC for Estimation of RCC for	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building for footing, column for beam	Assessments Class Assessment/ Report Quiz				
TEACH Lecture (PBL) TEACH Week 1 2 3 4 5 6 7 8 9	and Discus ING SCH Lectures 1 2 3 4 5 6 7 8	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for residential mid Quiz Estimation of RCC for Estimation of Septic	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building for footing, column for beam for slab tank and underground water	Assessments Class Assessment/ Report Quiz Class Assessment/				
TEACH Lecture (PBL) TEACH Week 1 2 3 4 5 6 7 8 9 10	and Discus HNG SCH Lectures 1 2 3 4 5 6 7 8 9	sion, Co-operative and EDULE Topics Earthwork excavation computation from sp Estimation for resider residential building. costing of residential Mid Quiz Estimation of RCC for Estimation of RCC fo	d Collaborative Method, Problem I on for roadway, earthwork oot levels ential building: One Storied Analysis of rates, specifications, l building for footing, column for beam for slab tank and underground water	Assessments Class Assessment/ Report Quiz Class Assessment/				

14		Final Q	Final Quiz					
ASSES	SMENT	STRATE	GΥ					
Compo	nents	Grading	СО	Blooms Taxon	omy			
Class Assessn Report	nent/	50%	CO1, CO2	C2				
Presenta	ation	10%	CO3	C3				
Quiz		40%	CO1, CO2	C2				
Total M	larks	100%						
REFER	RENCE	BOOKS						
 REFERENCE BOOKS 1. Estimating by – Abul Faraz Khan 2. Quantity Surveying: A Practical Guide for the Contractor's QS by Donald Towey. 3. Estimating & Costing in Civil Engineering by – Dutta 4. PWD Schedule of Rate 								

Spring Semester L-2, T-I

COURSE INFORMATION

COURSEIN			
Course Code	: CE 210	Lecture contact hours	: 3.00
Course Title	: GIS and Remote Sensing	Credit hours	: 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a hand on training course for GIS and remote sensing. In this course students will be introduced to basic functions and analysis of GIS. Students will be also practice using GIS software for conducting spatial analysis.

OBJECTIVE

- To understand basic functions of GIS
- To understand common formats of GIS data like shapefiles, raster, and geodatabases.
- To produce maps for basic GIS analysis
- To utilize GIS software for conducting spatial analysis

COURSE CONTENT

GIS: basic concepts, location & spatial data, GIS data source (vector & raster data), Map Projection System; use and application of GIS in civil engineering aspects; Features of Arc GIS, Hands-on exercises using Arc GIS, Google Earth and related software.

Remote Sensing: Introduction to satellite images, Classification of indices, Georeferencing and Digitization of satellite images.

COURSE OUTCOMES AND SKILL MAPPING

						_							
No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COS)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	60d	PO10	P011	PO12
1	Define the fundamental concepts and practices of Geographic Information Systems (GIS)	\checkmark											
2	Apply basic graphic and data visualization concepts such as colour theory, symbolization	\checkmark											
3	Define the fundamental	\checkmark											

	concepts and							
	practices of							
	Geographic							
	Information Systems							
	(GIS)							
4	Apply basic GIS and							
	remote sensing							
	analysis tools to		\checkmark					
	address geospatial		v					
	problems and/or							
	research questions.							
	cam Outcomes (PO):							
	Engineering knowledge							
	ons, PO4 : Investigation					0		
	Environment and susta							
	nunication, PO11 : Proj)12: L1	re-long	learning	
COU	RSE OUTCOMES AN	ND GENERIC	SKILLS	5		1		
		50						
		libr					ant	
No.	Course Outcomes	por	s ' Smy				me ds	
		res	om				ess	
		Corresponding POs	Bloom's Taxonomy	Ь	A	×	Assessment Methods	
	Define the				7	_		
	fundamental							
	concepts and		C1				Class	
CO1	practices of	1		1	1		Assessment/ Quiz	
	Geographic	_						
	Information							
	Systems (GIS)							
	Apply basic							
	graphic and data						Class	
CO2	visualization	1	C3	1		4,5	Assessment/	
02	concepts such as	1	0.5	1		4,5	Quiz	
	colour theory,						Quiz	
	symbolization							
	Define the							
	fundamental							
002	concepts and	1	C 2	1		1	Class	
CO3	practices of	1	C2	1		1	Assessment/	
	Geographic						Quiz	
	Information Systems (GIS)							
	Systems (GIS)							
	Apply basic GIS						Class	
CO4	and remote sensing	5	C3	3		4,5	Assessment/	
	analysis tools to						Quiz	
	address geospatial							

problems and/or			
research questions.			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

TEACHING LEARNING STRATEGY

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning ActivitiesEngagement (hours)Face to Face Learning22Lecture (2 hours/week x 11 weeks)22Class assessment (1 hours/week X10 weeks)10Guided Learning10Assessment Preparation (1.0 hours/week x 10
weeks)10Independent Learning10

Individual learning (1-hour lecture \approx 1-hour learning) Preparation for quiz	11 04
Assessment	
Quiz	03
Total	60

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments			
1	1	Basic concepts of GIS and spatial data; use and application of GIS in civil engineering aspects				
2	2	Introduction to GIS; Introduction to ArcGIS desktop software	Class Assessment			
3	3	Map Design				

4	4	GIS Output							
5	5	Table Operation	1		-				
6	6	Geoprocessing							
7	7	Mid Quiz			Quiz				
8	8		ntroduction to Map, Map Projections, and Coordinate Systems; Georeferencing						
9	9	Digitizing and	Editing						
10	10	Spatial Analysi	S		Class Assessment				
11	11	Introduction to	Introduction to satellite images						
12	12	Classification o	Classification of Indices						
13	13	Digitization of	satellite images		-				
14	14	Final Quiz			Quiz				
ASSES	SMENT ST	RATEGY							
Compo	nents	Grading	СО	Blo	oms Taxonomy				
Class A	ssessment	50%	CO1, CO2, CO3, CO4	C1,	C2, C3				
Quiz		50%	CO1, CO2, CO3, CO4	C1,	C2, C3				
Total M	Total Marks 100%								
REFER	RENCE BO	OKS							
		01	ormation System" by – Kang- k" by Wilpen L. Gorr, Krister	0	U				

Spring Semester L-2, T-I

COURSE INFOR	MATION		
Course Code	: CE 211	Lecture contact hours	: 3.00
Course Title	: Mechanics of Solids I	Credit hours	: 3.00
			L

PRE-REQUISITE

CE 101

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a basic mechanics course for civil engineering students. In this course, students will be introduced to basic solid mechanics including stress, strain, deformation, different loads, and behavior of structures under loading. This knowledge will be useful in various courses in the later semesters and various projects in their professional life.

OBJECTIVE

- Gain a fundamental understanding of the concepts of stress and strain by analysis of solids and structures. Study engineering properties of materials, force-deformation, and stress-strain relationship
- Learn fundamental principles of equilibrium, compatibility, and principle of superposition in linear solids and structures
- Analyse axial members, torsional members, and beams for axial force, shear force, torsion, and bending moment.
- Determine stress, strain, and deformation of various structural components.

COURSE CONTENT

Concepts of stress and strain, generalized Hooke's law; constitutive relationships; plane stress & strain, stresses and deformation, resisting force, axial and transverse load; deformations due to tension, compression and temperature change; reactions, axial force, shear force and bending moments of beams; axial force, shear force and bending moment diagrams using method of section, summation approach and singularity function; bending of beam, bending with axial load, unsymmetric bending; shear stress in beam; shear Centre; closely coiled helical springs.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE	PROGRAMME OUTCOMES (POs)								-			
	OUTCOMES (COs)	POI	P02	P03	P04	P05	P06	PO7	P08	P09	P010	PO11	P012
		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Ч
1	Ability to calculate deformation due to axial force and plot axial force diagrams.	\checkmark											
2	Ability to determine and plot axial force, shear force and bending moment		\checkmark										

	diagrams of structural members using different methods.								
3	Ability to compute bending stress in beams.	\checkmark							
4	Ability to determine shear stresses in beams.	\checkmark							
PO1: soluti PO7: Comr	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 								
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ч	A	K	Assessment Methods		
CO1	Ability to calculate deformation and stress due to axial force, and plot axial force diagrams.	1	C3	1		2,3	Class Test, Mid-term, Pop quiz, Final Exam		
CO2	Ability to determine and plot axial force, shear force and bending moment diagrams of structural members using different methods.	2	C3	1		2,3	Class Test, Mid-term, Pop quiz, Final Exam		
CO3	Ability to compute bending stress in beams.	2	C3	1		2,3	Class Test, Mid-term, Pop quiz, Final Exam		
CO4	Ability to determine shear stresses in beams.	2	C3	1		2,3	Class Test, Mid-Term, Final Exam		

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

<u>Complex Engineering Activities (A)</u>:

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

42			
15			
36 22			
2 3			
120			

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE							
Week	Lectures	Topics	Assessments				
	1	Course overview & Fundamental principles and methods of structural mechanics	CT/ Assignment-1				
1	2	Concept of stress and strain					
	3	Equilibrium of deformed body					
	4	Constitutive relationships					
2	5	Plane stress & strain, stresses and deformation, resisting force, axial and transverse load					
	6	Supports, reactions and internal forces					
	7	Plane stress & strain, stresses and deformation, resisting force, axial and transverse load					
3	8	Mechanical properties of materials					
	9	Calculation of reactions, axial force, shear and bending moment					
	10	Deformations due to tension, compression and temperature change	CT/ Assignment-2				
4	11	Deformations due to tension, compression and temperature change					
	12	Calculation of reactions, axial force, shear and bending moment					
	13	Deformations due to tension, compression and temperature change					
5	14	Deformations due to tension, compression and temperature change					
	15	Calculation of reactions, axial force, shear and bending moment					
	16	Deformations due to tension, compression and temperature change	Mid Term/ Assignment-3				
6	17	Bending stresses in beams					
	18	Axial force, Shear force and bending moment diagrams of beams: Section method					
	19	Bending stresses in beams					
7	20	Bending stresses in beams					
,	21	Axial force, Shear force and bending moment diagrams of beams: Section method					
8	22	Bending stresses in beams					

	23	Avial force Shaan for	e and bending moment		
	23	diagrams of beams: Se			
	24	Shear force and bendin Summation approach			
	25				
9	26	Shear force and bendin Summation approach	ng moment diagrams:		
	27	Shear force and bendin Summation approach	ng moment diagrams:		
	28	Bending stresses in be	ams		
10	29	Shear force and bendin Singularity function	ng moment diagrams:		
	30	Shear force and bendin Singularity function	ng moment diagrams:		
	31	Bending stresses in be	ams		
11	32	Shear stresses in beam	S		
	33	Shear stresses in beam	S		
	34	Unsymmetric bending	stress	CT/ Assignment-4	
12	35	Shear stresses in beam			
	36	Shear stresses in beam			
	37	Unsymmetric bending	stress		
13	38	Shear flow, shear center			
	39	Shear flow, shear center	er and examples		
	40	Unsymmetric bending	stress		
14	41	Closely coiled helical	springs		
	42	Closely coiled helical	springs		
ASSES	SSMENT ST	TRATEGY			
Comp	onents	Grading	СО	Blooms Taxonomy	
Contin Assess					
(Class	assignments/ id Term/	40%	40% CO1, CO2, CO3, CO4 CO4		
Partici	pation)				
Final I	Fxam	60%	CO 1	C3	
		0070	C2		
		•			

		CO 3	C3				
		CO4	C3				
Total Marks	100%						
REFERENCE BOOKS							
 Engineering Mechanics of Solids, Egor P. Popov, Prentice-Hall of India, 5th Edition. Mechanics of Materials, Ferdinand P. Beer, E. Russell Johnston, Jonn T. DeWolf and David F. Mazurek, McGraw Hill, 8th Edition. Mechanics of Materials, R C. Hibbeler, Pearson, 11th Edition Mechanics of Materials, Ferdinand L Singer and Andrew Pytel, 4th Edition. Strength of Materials, W A Nash, 4th Edition. 							

COURSE INFORMATION

	: Structural Mechanics and	Lootare contact notifs	: 1.50 : 3.00
	Materials Sessional	Credit hours	: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a material based sessional course for civil engineering students. In this course, students will learn how to determine different properties of materials, especially for construction-related materials like cement, aggregate, brick and steel reinforcement. Besides, students will be able to know and interpret different standards for materials testing.

OBJECTIVE

- To determine different engineering properties of materials like cement, aggregate, brick, metal etc.
- To learn the mix design of concrete.
- To determine different mechanical properties of mortar and concrete.
- To determine different mechanical properties of structural members like columns, beams, etc.
- To know and interpret different standards for materials testing.

COURSE CONTENT

Normal consistency, initial and final setting times, specific gravity of cement, compressive strengths of cement mortar; gradation, specific gravity, absorption capacity and unit weight of fine and coarse aggregates; design and testing of a concrete mix, and testing of bricks for compressive strength.

Tension, direct shear and impact tests of mild steel specimen; slender column test; static bending test; hardness test of metals; helical spring test.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.				PROGRAMME OUTCOMES (POs)									
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	P06	PO7	P08	60d	PO10	P011	P012
1	Ability to determine the engineering properties of cement, aggregate, brick and metal.												
2	Ability to design mix design of concrete.												

3	Ability to determine different mechanical properties of mortar and concrete.	√								
4	Ability to determine different mechanical properties of structural members like columns, beams,	\checkmark								
Progr	etc. cam Outcomes (PO):									
solutio PO7 : Comm	 PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 									
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods			
CO1	Ability to determine the engineering properties of cement, aggregate, brick and metal.	1	C3			2,3	Report, Pop quiz, Final Quiz, VIVA			
CO2	Ability to design mix design of concrete.	3	C3			2,5	Report, Pop quiz, Final Quiz, VIVA			
CO3	Ability to determine different mechanical properties of mortar and concrete.	1	C3			2,3	Report, Pop quiz, Final Quiz, VIVA			
CO4	Ability to determine different mechanical properties of structural members like columns, beams, etc.	1	C3			2,3	Report, Pop quiz, Final Quiz, VIVA			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

<u>Complex Engineering Activities (A)</u>:

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)					
Face to Face Learning	26					
Lecture (2 hours/week x 13 weeks)						
Guided Learning						
Tutorial/ Assignments (0.5 hours/week x 14 weeks)	7					
Independent Learning						
Individual learning (1-hour lecture \approx 1-hour						
learning)	14					
Preparation for tests and examination	10					
Assessment						
Quiz + Viva	3					
Total 60						
TEACHING METHODOLOGY						
Lecture and Discussion, Co-operative and Collab	orative Method, Problem Based Learning					

(PBL)

TEACH	HING SCH	EDULE										
Week	Lectures	Topics			Assessments							
1	1	Sieve analysis and Un Aggregates	it Weight of Coarse and I	Fine								
2	2	Tension tests of a Mile	l Steel Specimen									
3	3	Specific gravity and A and Fine Aggregates	bsorption Capacity of Co	oarse								
4	4	Slender column test										
5	5	Design and Testing of	a Concrete Mix									
6	6	Static bending test			Report +							
7	7	Normal consistency ar	nd specific gravity of cen	nent	Quiz + VIVA							
8	8	Hardness test of metal	ness test of metals									
9	9	Compressive strengths	pressive strengths of cement mortar									
10	10	Impact tests of mild st	ct tests of mild steel specimen									
11	11	Initial and Final Settin	al and Final Setting Times									
12	12	Helical Spring										
13	13	Testing of Bricks for C	Compressive Strength									
14	14	Quiz + VIVA										
ASSES	SMENT ST	RATEGY		_								
Compo	nents	Grading	СО	Bloor	oms Taxonomy							
			CO 1	C1								
Continu		10.1	CO 2	C3								
Assessm (Lab Re		40%	CO 3	C1								
	I • • • •		CO4	C1								
			CO 1	C1								
E' 1E												
Final E	xam & Quiz 2	50%	CO 2	C3								
Quiz 1			CO 3	C1								
			CO4	C1								
			CO 1	C1								
VIVA		10%	CO 2	C3								
			CO 3	C1								
T (1) f	1	1000/	CO4	C1								
Total M	arks	100%										

REFERENCE BOOKS

- 1. Engineering Mechanics of Solids by Popov
- 2. Mechanics of Materials, Ferdinand P. Beer, E. Russell Johnston, Jonn T. DeWolf and David F. Mazurek, McGraw Hill, 8th Edition
- 3. Theory and Problems of Strength of Materials by -William A Nash
- 4. Laboratory Manual
- 5. 5. ASTM Internation Standards

Fall Semester L-2, T-II

COURSE INFO	COURSE INFORMATION										
Course Code	: CE 213	Lecture contact hours	: 3.00								
Course Title	: Mechanics of Solids II	Credit hours	: 3.00								

PRE-REQUISITE

CE 211

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a continuation of CE 211 Mechanics of Solids I. In this course students will be able to gain fundamental knowledge on stress, strain, deformation, behaviour of beams and columns subjected to various loading.

OBJECTIVE

- To gain knowledge about the effect (state of stress) on beam due to combined loading and the transformation stresses and construction Mohr's circles of stress, subsequently understand the failure criteria by different theories of failure
- To understand Euler's buckling theory and its application in compressive members.
- To compute the deflection of beam by various methods.
- To develop the concept of strain energy for axial stress, flexural stress and shear stress.
- To understand the behaviour of cable under uniformly distributed load and concentrated load.

COURSE CONTENT (2021)

Stress transformation, Mohr's circle of stresses; beam deflection by direct integration method, moment area method; elastic strain energy and external work (Castigliano's Theorem), buckling of columns; concept of Euler's buckling of columns, elastic analysis of circular shafts, solid non-circular and thin walled tubular members subjected to torsion, flexible chords, cable theorem; cable and cable supported structures.

COURSE OUTCOMES AND SKILL MAPPING

		-											
No.	COURSE	PROGRAMME OUTCOMES (POs)											
	OUTCOMES (COs)	-	2	3	4	S	9		8	6	10	11	12
		PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	60d	P010	PO1	P012
1	Understand the stress and elastic strain energy under different loading (normal, shear, torsion etc)	\checkmark											
2	Solve the flexible cord, cable and cable supported structure												
3	Apply energy principle to determine the		\checkmark										

	deflection and rotation of flexural member						
4	Understand the fundamental buckling phenomena of axially loaded members	\checkmark					

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COU	RSE OUTCOMES AN	ID GENEI	RIC SKII	LLS			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Understand the stress and elastic strain energy under different loading (normal, shear, torsion etc)	1	L2	1		K3, P1	Class Test/ Mid-term/ Pop quiz/ Final Exam
CO2	Apply cable theorem to solve the flexible cord, cable and cable supported structure	1	L3	1		K3,K 4/ P1	Class Test/ Final Exam
CO3	Determine the deflection and rotation of flexural member	1	L3	1		K3, K4/P1	Class Test/ Mid-term/ Pop quiz/ Final Exam
CO4	Understand the fundamental buckling phenomena of axially loaded members	2	L2	1		K3/P1	Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	42
(4 hours/week x 14 weeks)	
Guided Learning	10
Tutorial/ Assignments (4 hours/week x 5 weeks)	18
Independent Learning	
Individual learning (1 hour lecture \approx 1.0 hour	33
learning)	22
Preparation for tests and examination	
Assessment	
Pop Quiz/Class Test/Mid-Term Exam	2
Final examination	3
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments
	1	Introduction and fundamentals of mechanics and mechanics of solids, Discussion on syllabus etc.	Class Test, Mid- term, Pop quiz,
1	2	Elastic strain energy and external work	Assignment,Final
1	1 3 Deflection of beam: Derivation of 2nd and 4th order differential equation of deflection of beam(direct integration method)		Exam
	4	Deflection of beam using moment area method	
	5	Beam deflection examples	
2	6	Deflection of beam using direct integration method: Simply supported with point loading, discontinuous UDL, Concentrated moment	

г	7		
	7	Examples on Moment area Method and double	
3	8	integration methods	-
	9	Elastic strain energy	
	10	External work	-
4	11	Examples	-
	12	Castigliano's Theorem for beam deflection	-
-	13	Apply Castigliano's theorem for truss deflection	
5	14	Beam deflection examples	-
	15	Truss deflection using Castigliano's theorem	-
			_
	16	Introduction to Buckling of column, related	
		definitions and concepts.	
		Derivation of Euler's Load for columns with pin	
6		ends.	
		Euler Load for columns with different end	
-	17	restraints.	
-	17	Flexible chords	
	<u>18</u> 19		-
7	20	Euler Formula and buckling of columns	
/	20	Cable theorem	-
	21		-
8	22	Euler Formula and buckling of columns	
0	23	Cable and cable supported structures	-
	25	Basic concept of transformation of stress.	-
	26 26	Transformation of stresses in 2D problems,	
	-0	Principal stresses in 2D problems, Maximum	
9		shear stresses in 2D problems	
-	27	Cable theorem; cable and cable supported	-
		structures	
	28	Examples of Transformation of stress	
	29	Elastic analysis of circular shafts subjected to	1
10	30	torsion	
		Thin walled tubular members subjected to	
		torsion	
	31	Mohr's circle of stresses	
11	32	Elastic analysis of circular shafts subjected to	
	33	torsion	4
	34	Mohr's circle of stresses	4
12	35	Solid non-circular subjected to torsion	
	36		4
	37	Mohr's circle of stresses	4
13	38	Stress transformation and principle stress	
	39		-
1.4	40	Mohr's circle of stresses	4
14	41	Combination of composite-shape members	
		subjected to torsion	

42	Discussio	n	
		7	
ASSESSMENT S	1		
Components	Grading	CO	Blooms Taxonomy
Continuous Assessment (CT/ Mid Term/ Active Class	40%	CO1, CO2, CO3, CO4	L2, L3
Participation)			
Final Exam	60%	CO1, CO2, CO3, CO4	L2, L3
Total Marks	100%		
REFERENCE B	OOKS	•	
 Advanced Street Theory and Press 	ength and Apoblems of S	Solids by – Popov oplied Elasticity, 5 th Edition, by trength of Materials by -Willia Andrew Pytel Ferdinand L	

- Strength of Materials by Andrew Pytel, Ferdinand L. Singer (4th Edition)
 Mechanics of Materials by Laurson& Cox
- 6. Strength of Materials by -R.S. Khurmi

Fluid Mechanics

Spring Semester L-2, T-I

COURSE INFORMATION										
Course Code	: CE 261	Contact hours	: 3.00							
Course Title	: Fluid Mechanics	Credit hours	: 3.00							
PRE-REQUISITE										

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will be helpful for students to learn how to analyze the fluid properties; fluid statics; kinematics of fluid flows; fluid flow concepts and basic equations- continuity equation, Bernoulli's equation, energy equation, momentum equation and forces in fluid flow; steady incompressible flow in pressure conduits, laminar and turbulent flow. In this course, students will also be introduced with the concept of general equation for fluid friction; empirical equations for pipe flow; minor losses in pipe flow; pipe flow problems- pipes in series and parallel, branching pipes, pipe networks etc. which will be useful in various projects in the following semesters and in their professional life.

OBJECTIVE

• To learn the basic properties of fluid and their applications

- To understand the governing equations of fluid flow i.e. continuity, energy and momentum equations
- To learn fundamental concepts in designing pipes and analysis of pipe networks

COURSE CONTENT

Fluid properties; fluid statics; kinematics of fluid flows; fluid flow concepts and basic equationscontinuity equation, Bernoulli's energy equation, energy equation, momentum equation and forces in fluid flow; steady incompressible flow in pressure conduits, laminar and turbulent flow, general equation for fluid friction; empirical equations for pipe flow; major and minor losses in pipe flow; pipe flow problems- pipes in series and parallel, branching pipes, pipe networks

COL	COURSE OUTCOMESAND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)	PRC	PROGRAMME OUTCOMES (POs)										
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	P011	PO12
1	Understand the properties of fluids, and the significance of basic principles of fluid statics and application of hydrostatic law in determining forces on	\checkmark											

257

	surfaces and hydraulic structures							
2	Understand the basic principles of fluid kinematics and dynamics with specific emphasis on application of continuity equation, momentum equation etc.							
3	Apply the principles of Bernoulli's equation in measurement of discharge in pipes, and in other pipe flow problems	\checkmark						
4	Apply fundamental concepts in designing pipes and analysis of pipe networks		V					

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COU	RSE OUTCOMES AND	GENERIC	SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	A	K	Assessment Methods
CO1	Understand the properties of fluids, and the significance of basic principles of fluid statics and application of hydrostatic law in determining forces on surfaces and hydraulic structures	1	C2	1, 3		2	Pop Quiz, Assignment, Final Exam
CO2	Understand the basic principles of fluid kinematics and dynamics with specific emphasis on application of	1	C2	1, 3		2, 3	Class Test, Mid-Term, Final Exam

	continuity equation, momentum equation etc.					
CO3	Apply the principles of Bernoulli's equation in measurement of discharge in pipes, and in other pipe flow problems	1	C2	1, 3	2, 3	Class Test, Mid-Term, Final Exam
CO4	Apply the principles of Bernoulli's equation in measurement of discharge in pipes, and in other pipe flow problems	2	C3	1, 3	5	Class Test, Mid-Term, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	42
Lecture (3 hours/week x 14 weeks)	
Guided Learning	15
Tutorial/ Assignments (3 hours/week x 5 weeks)	15
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour	36
learning)	22
Preparation for tests and examination	22
Assessment	
Continuous Assessment	2
Final examination	3
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEAC			
Week	Lectures	Topics	Assessments
	1	Introduction to Fluids and Fluid Mechanics	CT/ Assignment-1
1	2	Definition of a fluid, shear, strain rate and viscosity	
	3	Different type of fluid flow	
	4	Fluid properties: density, pressure etc	
2	5	Dynamic and Kinematic viscosity	
	6	Surface Tension	
	7	Fluid Statics: Pascal's law	
3	8	Variation of pressure, Manometers	
	9	Forces on plane surface – concept and problem	
	10	Forces on inclined surface	CT/ Assignment-2
4	11	Forces on curved surface – concept	
	12	Forces on curved surface – problem	
	13	Laminar and Turbulent Flows - Concept	
5	14	Laminar and Turbulent Flows - Problem	
	15	Steady, Unsteady, Uniform, Non-uniform Flows	
	16	1D, 2D and 3D Flows	Mid Term/
6	17	Streamlines, Path lines and Stream tubes - Concept	Assignment-3
	18	Streamlines and Path lines - Problem	
	19	Continuity Equation for 1D Steady Flow	
7	20	Stream Function, Potential Function and Flow net	
	21	Various Types of Energy in Fluid Flow	
	22	Bernoulli's Equation	
8	23	Kinetic Energy Coefficient – Concept and Problem	
	24	Energy Equation for 1D Steady Flow	
-	25	Total Energy Line and Hydraulic Grade Line, Cavitations	
9	26	Head and Power - Pump	
	27	Head and Power - Turbine	

	28	Linear Momentum Equ									
10	29	Momentum Coefficient									
	30	are Conduits									
	31	Force Exerted on Statio	orce Exerted on Stationary Vane								
11	32	2. Force Exerted on Moving Vane									
	33	Reaction of a Jet									
	34	Flow in pressure condu	its	CT/ Assignment-4							
12	35	General equation for flu	id friction								
	36	Darcy-Weisbach and H	agen-Poisevielle Equatio	n							
	37	Major and minor losses	in pipe flow								
13		Pipes in series, expansion coefficients	5								
	39	Pipes in parallel, equiva	pes in parallel, equivalent lengths								
	40	Branching pipes									
14	41	Pipe networks, Hardy-C	Cross method								
	42	Pipe networks, multiple	pipe systems								
ASSE	ESSMENT STR	ATEGY									
Com	ponents	Grading	СО	Blooms Taxonomy							
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active		40%	CO1, CO2, CO3, CO4	C2, C3							
Class	Participation)										
			CO1	C2							
			CO^{2}	C^{2}							

Components	Grading	СО	Blooms Taxonomy						
Continuous Assessment	400/	CO1, CO2, CO3,	62 62						
(Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO4	C2, C3						
		CO1	C2						
F' 1 F	<u> </u>	CO2	C2						
Final Exam	60%	CO3	C2						
		CO4	C3						
Total Marks	100%								
REFERENCE BOOKS									

1. Fluid Mechanics with Engineering Application by Franzini

2. Mechanics of Fluids by Merly Potter and David Wiggert (Shames Series)

3. Fluid Mechancis by Subrahmaniyam

4. Fluid Mechanics by Vennard and Street

5. Fluid Mechanics by Steeter and Wylie

6. Hydraulics, Fluid Mechanics and Hydraulic Machines by R S Khurmi

Fluid Mechanics Sessional

Spring Semester L-2, T-I

COURSE INI	COURSE INFORMATION									
Course Code	: CE 262	Contact hours	: 3.00							
Course Title	: Fluid Mechanics Sessional	Credit hours	: 1.50							

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a sessional course where students can have a hand on experiment about the centre of pressure; proof of Bernoulli's theorem; flow through venturimeter; flow through orifice; coefficient of discharge; coefficient of resistance; flow over v-notch; flow over sharp-crested weir; fluid friction in pipe etc. which will be useful in their professional life.

OBJECTIVE

- To understand the basic principles of fluid mechanics
- To apply the basic principles to solve hydraulic engineering problems
- To apply the theoretical knowledge to carry out experimental investigations of fluid problems

COURSE CONTENT

Centre of pressure; proof of Bernoulli's theorem; flow through venturimeter; flow through orifice; coefficient of discharge; coefficient of resistance; flow over v-notch; flow over sharp-crested weir; fluid friction in pipe; computer applications in solving pipe network problems.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
		PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
1	Understand the basic principles of fluid mechanics.												
2	Apply the basic principles of fluid mechanics to solve hydraulic engineering problems.		\checkmark										
3	Apply the theoretical knowledge to carry out experimental investigations of fluid problems.		\checkmark										

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS Corresponding POs Bloom's Taxonomy Assessment No. **Course Outcomes** Methods A \mathbf{N} Ъ **Understand** the basic Lab Report + 1 C2 3 CO1 principles fluid of Quiz+ Viva mechanics. Apply basic the principles fluid of Lab Report + 2 CO2 mechanics solve C3 3, 6 to Ouiz + Viva hydraulic engineering problems. **Apply** the theoretical knowledge to carry out Lab Report + CO3 2 C3 3 experimental Quiz investigations of fluid problems.

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 10 weeks)	30
Guided Learning	01

Report	Writing (1 ho	our/week x 9 weeks)						
Indep	endent Learn	ing	10	10				
Individ	lual learning		08	08				
Assess	ment		2	2				
Quiz +	Viva							
Total		60						
TEAC	HING METH							
Lectur	e and Discussi	ion, Experiments, Problem	Based Learning (PBL	.)				
TEAC	HING SCHE	CDULE						
Week	Lectures	Topics		Assessments				
1	1	Introduction		Lab Manual,				
2	2	Determination of Centre	of Pressure	Lecture notes, Reference texts etc.				
3	3	Proof of Bernoulli's Equ	ation					
4	4	Flow through an Orifice						
5	5	Flow Over a Sharp crest	ed Rectangular Weir					
6	6	Mid Quiz						
7	7	Flow through a Venturi	Meter					
8	8	Flow over a V-notch						
9	9	Fluid Friction in a Pipe						
10	10	Determination of Co-eff Change in Cross Section		r				
11	11	Determination of Co-eff Orifice Discharge Appar		ng				
12	12	Final Quiz						
13	13	Viva						
ASSE	SSMENT ST	RATEGY						
Comp	onents	Grading	СО	Blooms Taxonomy				
Contin Assess (Condu Lab Re	ment .ct Lab Test &	2 40%	40% CO1, CO2, CO3					
			CO 1	C2				
Quiz a	& Viva	60%	CO 2	C3				
			CO 3	C3				
Total N	Marks	100%						

REFERENCE BOOKS

- Fluid Mechanics with Engineering Application by Franzini
 Fluid Mechanics and Hydraulic Machines by R k Bansal
 Laboratory Manual

Fall Semester L-3, T-II

COURSE INFORMATION

Course Code Course Title	: CE 300 : Civil Engineering Students' Internship Programme (CESIP)	Lecture contact hours Credit hours	: 3 Weeks : 1.5
-----------------------------	---	---------------------------------------	--------------------

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will learn the details of construction works and different testing procedure related to civil engineering works. They can corelate their theoretical knowledge with practical application.

OBJECTIVE

- To observe the details of construction works /testing procedure
- To identify any technical deviation in construction project from theoretical knowledge
- To gain knowledge about construction management
- To perform verbal presentation on the practical knowledge

COURSE CONTENT

Three weeks of internship in a civil engineering related job at an organization/firm as suggested by the department. Performance will be evaluated based on a presentation and a report submitted by the intern and evaluation of the reporting officer at the organization/firm.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	909	PO10	P011	PO12
1	Ability to gain practical professional experience in Civil Engineering												
2	Ability to work effectively as an individual and also as a member of a team during industrial attachment									\checkmark			

3	Ability to develop an						
	appreciation of the						
	breadth of Civil						\checkmark
	Engineering which						
	helps to gain life-long						
	learning capability						
4	Ability to perform						
	verbal presentation on						
	the gained knowledge						
D							

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

				-			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	V	K	Assessment Methods
CO1	Ability to gain practical professional experience in Civil Engineering	1	C2	-	1,2	6	Presentation, Report, VIVA
CO2	Ability to work effectively as an individual and also as a member of a team during industrial attachment	9	C3	-	-	6	Presentation, Report, VIVA
CO3	Ability to develop an appreciation of the breadth of Civil Engineering which helps to gain life- long learning capability	12	C3	-	1,2	6	Presentation, Report, VIVA
CO4	Ability to perform verbal presentation on the gained knowledge	10	C2	-	-	-	Presentation, Report, VIVA

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)		
Face to Face Learning	40		
Lecture (4 hours/week x 2 weeks)	40		
Guided Learning	10		
Report (2 hours/week x 1 weeks)	10		
Independent Learning			
Individual learning (1-hour lecture \approx 1-hour learning)			
Preparation for tests and examination	7		
Assessment			
Presentation + Viva	3		
Total	60		

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

Weeks	Торіс	Assessments
1	Visit of one industry	
2	Visit of another industry	1
3	• Preparing report based on their gather knowledge during industrial training	Presentation, Report, VIVA
3	• Preparing presentation for shearing gathered knowledge	
	Preparation for viva	

ASSESSMENT STRATEGY							
Components	Grading	СО	Blooms Taxonomy				
Continuous		CO1	C2				
Assessment	50%	CO2	C3				
(Report)	30%	CO3	C3				
(Report)		CO4	C2				
		CO1	C2				
Presentation &	50%	CO2	C3				
VIVA	30%	CO3	C3				
		CO4	C2				
Total Marks	100%						
REFERENCE BOOKS							
N/A							

CHAPTER 7

DETAILED SYLLABUS OF DEPARTMENTAL COURSES (CORE AND ELECTIVE)

7.1 Structural Engineering

Spring Semester L-3, T-I

Theoretical (Core)

Course Code	: CE 311	Lecture contact hours	: 4.00
Course Title	: Structural Analysis and Design I	Credit hours	: 4.00

PRE-REQUISITE

CE 211 Mechanics of Solids I

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is the first course on structural analysis. In this course, students will learn how to analysis various structural components subjected to both static and moving loads. The analysis techniques learnt in this course will be useful in later courses where students will learn how to design different structural components.

OBJECTIVE

- To analyze statically determinate structures such as simple beams, cantilever beams, three hinged arches or frames and trusses.
- To analyze statically indeterminate structures using simplified methods
- To analyse the application of lateral load on structures using Bangladesh National Building Codes.
- To analyze moving load on various types of structures

COURSE CONTENT

Stability and determinacy of structures; Analysis of statically determinate frames, gable frames, trusses and arches; Influence lines for beams, floor beams, determinate frames and trusses; Moving loads on beams, frames and trusses; Absolute Maximum moments for Wheel Loads; Analysis of suspension bridges. Wind and earthquake loads, code provisions as per BNBC. Approximate analysis of statically indeterminate structures: Mill bents, braced trusses; multi storied building frames analysis under vertical load and lateral load (Portal and cantilever method); Deflection of trusses and frames by virtual work method.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No	COURSE OUTCOMES			P	ROG	RAM	ME O	UTC	OME	S (PC	Ds)		
	(COs)	1	2	3	4	5	9	7	×	6	10	11	12
		PO1	PO2	PO3	P04	204	PO6	PO7	PO8	60d	PO10	POI	PO12
1	Analyze statically determinate structures.		\checkmark										
2	2 Analyze the effect of moving loads on statically determinate structures		\checkmark										
3	Solve statically indeterminate structures using approximate methods.												
4.	4. Calculate lateral loads of a multi-storied building.		\checkmark										
solut Envi Com	: Engineering knowledge, P ions, PO4: Investigation, Po ronment and sustainability, munication, PO11: Project	O5 : N PO8 : mana	Aoder Ethic geme	n too s, P nt an	ol usa O9 : I id fin	ge, P ndivie ance,	O6: T dual a	he eng nd tea	gineen mwoi	and rk, P	societ 010:	ty, PC)7 :
No.	Course Outcomes	Corresponding	POs		Bloom's Taxonomy P		A		K		Assessment Methods		
CO1	Analyze statically determinate structures.	2			C4		1,2			4	Mid	s Test term, l Exar	
CO2	Analyze the effect of moving loads on statically determinate structures	2			C4		1,2			4	Mid	s Test term, l Exar	
CO3	Solve statically indeterminate		2		C4		1,2			4	Mid	s Test term, l Exar	

CO4 Calculate lateral loads of a multi-storied building.	2	C4	1,2		4	Class Test, Mid-term, Final Exam
--	---	----	-----	--	---	--

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (4 hours/week x 14 weeks)	56
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	20
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	36 42
Assessment Continuous Assessment Final examination Total	3 3 160

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEAC	HING SCH	EDULE	
Week	Lectures	Topics	Assessments
	1	Earthquake load calculation as per BNBC-1993	CT/ Assignment-1
1	2	Earthquake load calculation as per BNBC-1993 (contd)	
	3	Earthquake load calculation as per BNBC-2014	
2	4	Earthquake load calculation as per BNBC-2014 (contd)	
2	5	Wind load calculation as per BNBC-1993	
3	6	Wind load calculation as per BNBC-1993 (contd)	
4	7	Wind load calculation as per BNBC-2014	CT/ Assignment-2
4	8	Wind load calculation as per BNBC-2014 (contd)	
5	9	Approximate analysis of statically indeterminate truss	
5	10	Approximate analysis of statically indeterminate truss (contd)	
6	11	Approximate analysis of statically indeterminate portal frame subjected to vertical load.	Mid Term/ Assignment-3
6	12	Approximate analysis of statically indeterminate portal frame subjected to vertical load. (contd)	
-	13	Approximate analysis of statically indeterminate portal frame subjected to lateral load using portal method	
/	14	Approximate analysis of statically indeterminate portal frame subjected to lateral load using portal method (contd)	
0	15	Approximate analysis of statically indeterminate portal frame using cantilever method	-
8	16	Approximate analysis of statically indeterminate portal frame using cantilever method (contd)	
0	17	Approximate analysis of tower truss	
9	18	Approximate analysis of tower truss (contd)	
10	19	Approximate analysis of tower truss (contd)	
10	20	Approximate analysis of tower truss (contd)	
11	21	Principle of work and energy. Principle of virtual work	
11	22	Analysis and deflection calculation of truss using method of virtual work	

	23	Introduction to Castigliano's theorem	CT/ Assignment-4
12	24	Analysis and deflection calculation of truss using Castigliano's theorem	
13	25	Analysis and deflection calculation of beam using method of virtual work	
15	26	Analysis and deflection calculation of frame using method of virtual work	
	27	Analysis and deflection calculation of beam using Castigliano's theorem	
14	28	Analysis and deflection calculation of frame using Castigliano's theorem	
	1		1

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy						
Continuous Assessment (Class assignments/	40%	CO1, CO2, CO3,	C4						
CT/ Mid Term/ Active Class Participation)		CO4							
		CO 1	C4						
Final Exam	60%	CO 2	C4						
		CO 3	C4						
		CO 4	C4						
Total Marks	100%								
REFERENCE BOOKS									

1. Structural Analysis, R C. Hibbeler, Prentice Hall, 8th Edition.

2. Indeterminate Structural Analysis, C K Wang, McGraw-Hill International Editions.

3. Matrix Analysis of Framed Structures, W. Weaver, Jr., James M. Gere, McGraw Hill, 2nd Edition.

4. Elementary Structural Analysis, Charles Head Norris, John Benson Wilbur and Senol Utku, McGraw Hill, 4th Edition.

Spring Semester L-3, T-I

Theoretical (Core)

COURSE INFORMATION									
Course Code	: CE 315	Lecture contact hours	: 3.00						
Course Title	: Design of Concrete Structures I	Credit hours	: 3.00						
PRE-REOUISITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course, students will learn to design different types of reinforced concrete slabs and beams under flexural and shear loading and to develop a strong foundation and design concepts of reinforced concrete building which will be beneficial for their future development and professionalism.

OBJECTIVE

- To gain knowledge on the basics of reinforced concrete structure.
- To be able to design beam, slab, and shear reinforcement for beam.
- To become aware of the proper safety and serviceability of reinforced concrete structures.

COURSE CONTENT (2021)

Fundamental behavior of reinforced concrete and loads on structure; introduction to strength and serviceability design and alternative design methods; flexural design of beams (singly reinforced, doubly reinforced, T-beam) using strength design method; shear, diagonal tension, and torsion of beams; Bond and anchorage of reinforcement and its detailing. Introduction to floor systems; structural forms, Design of one-way slabs; design of two-way edge supported slabs: using strip and alternate methods

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES			I	PROC	GRAM	IME (OUTC	COME	ES (P	Os)		
•	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
1	Understand fundamental design concepts of reinforced concrete	\checkmark											
2	Analyze the capacity of structural members against applied load considering the given material property.												
3	Design of slabs, and beams for flexure and shear load using code provisions			\checkmark									
PO1	Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7:												

Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

	COURSE OUTCOMES AND GENERIC SKILLS											
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	A	K	Assessment Methods					
CO1	Understand fundamental design concepts of reinforced concrete	1	C2	1	-	3	Class Test/ Mid-term/ Final Exam					
CO2	Analyze the capacity of structural members against applied load considering the given material property.	2	C4	1, 3	-	3, 4	Class Test/ Mid-term/ Final Exam					
CO3	Design of slabs, and beams for flexure and shear load using code provisions	3	C3	1,3, 5	-	5	Mid-term/ Pop quiz/ Final Exam					

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	18
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning)	33 22

Preparatio	on for tests a	nd examination					
Assessme	ent						
Continuo	us Assessme	nt		2			
Final exa	mination			3			
Total			120				
				120			
ГЕАСНІ	NG METH	ODOLOGY					
Lecture a	nd Discussio	n, Problem Based Learning (PB	L)				
ГЕАСНІ	NG SCHEI	DULE					
Week	Lectures	Topics		Assessments			
	1	Introduction to Concrete, Reinf	forced	Class Test, Mid-term, Pop			
		Concrete, and Prestressed Concrete, Load		quiz, Final Exam			
		according to BNBC		1,			
1	2	Introduction to strength design	and alternate				
		design methods;					
	3	Safety provision of ACI Code,	and				
		serviceability.					
	4	The fundamental assumption of RC					
		concrete, Behavior under axial					
	5	Materials properties under com					
2		and tension, shrinkage, tempera	-				
2		strain curve, relaxation, etc.	,				
	6	Materials properties under com	pression				
	_	and tension, shrinkage, temperature, stress-					
		strain curve, relaxation, etc.	,				
	7	Flexural analysis and design of	beam.				
2		bending of a homogenous bean					
3	8	RC concrete beam behavior.					
	9	Design example.					
	10	Design of tension-reinforced re	ctangular				
		beam, ACI Code Provisions	C				
4	11	Under-reinforced, over-reinford	ced beam,				
		minimum reinforcement ratio.					
	12	Design of singly reinforced bea	am				
	13	Design example of singly reinf	orced beam				
	14	Design aid, practical consideration					
5		design of the beam,					
	15	Rectangular beam with tension	and				
		compression.					
	16	Doubly Reinforced beam analy	vsis				
	17	Design example of the doubly					
6		beam.					
	18	Design example of the doubly	reinforced				
		beam.					
	19	T-beam analysis					
7	20	Effective flange width, and stre	ength				
		analysis.	0				

	21	T-beam design exampl	e					
	22	T-beam design exampl						
	23	Shear and diagonal ten						
0		Diagonal tension in ho						
8		beams						
	24	Reinforced concrete be	am without shear					
		reinforcement						
	25	ACI code provision for	shear design					
9	26	Design Example.						
	27	Design of web reinforc						
	28	Design problems.						
	29	Analysis and design of	slab, design of one-					
10		way slab.						
	30	Temperature shrinkage reinforcement,						
		Design example of one	*					
	31	Design example and de	etailing of the one-					
		way slab.						
11	32	Behavior of two-way e						
		column supported slab.						
	33	Design procedure of sl						
	24	methods.						
	34	Introduction to the moment coefficient method						
	25		alah waina tha					
12	35	Design of the two-way moment coefficient me						
	36							
	50	Design of the two-way moment coefficient me	_					
	37	Design of the two-way						
	51	coefficient method.	sido using moment					
	38	Design and reinforcem	ent detailing of a					
13	50	two-way slab.	ont dotaining of a					
	39	Bond and anchorage ar	nd Development					
		length, fundamentals o	1					
	40	Bond strength and deve						
		anchorage requirement	1 0					
14	41	Bar cut-off and bent po						
		splices.						
	42	Design example of dev	elopment length.					
ASSESS	MENT STRA	ATEGY						
Compone	ents	Grading	СО	Blooms Taxonomy				
Continuou	18							
Assessme								
(Class assignments/ CT/ Mid Term/ Active		40%	CO1, CO2, CO3	C2, C3, C4				
Class Participation)								
Final Exa		60%	CO 1	C2				

		CO 2	C4						
		CO 3	C3						
Total Marks	100%								
REFERENCE BOOKS									
 Design of Concrete Structures by – Nilson, David & Dolan (15th Edition) Reinforced Concrete: Mechanics and Design (6th Edi) by James Wight and James MacGregor Design of Concrete Structures by – Nilson (12th Edition) Structural Design Guide to the ACI Building Code (3rd Edition) - Rice, Hoffman, Gustafson, Gouwens 									

5. Bangladesh National Building Code – BNBC 2020

Fall Semester L-3, T-II

Theoretical (Core)

COURSE INFORMATION										
Course Code	: CE 317	Lecture contact hours	: 3.00							
Course Title	: Design of Concrete Structures II	Credit hours	: 3.00							
PRE-REQUIS	SITE									
CE 315										
	MCTDICTIDE									

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course, students will learn to design various components of reinforced concrete buildings, such as slabs with/without beams, short columns, slender columns, footing, pile caps, retaining walls, shear wall, etc and to develop a strong foundation and concepts of seismic resistant building and pre-stressed concrete which will be beneficial for their future development and professionalism.

OBJECTIVE

- To develop a strong foundation on reinforced concrete structure maintaining proper safety and serviceability requirement.
- To be able to design various components of reinforced concrete structure, specially focusing on slab with/without beams, short column, slender column, footing, pile caps, retaining wall, shear wall etc.
- To understand the basic concepts of pre-stressed concrete.
- To be able to analyse pre-stressed concrete beam

COURSE CONTENT (2021)

Design of columns under uniaxial and biaxial loading, introduction to slender column; structural design of footings, pile caps; retaining wall, seismic detailing; shear wall subjected to axial load and flexure; Design of column supported slabs; Prestressed Concrete: concepts of prestressing; materials; anchorage systems; analysis and preliminary design of prestressed beam.

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	909	PO10	P011	P012
1	Ability to analyze and design super-structure components of a reinforced concrete building.			V									
2	Ability to design floor system of a reinforced concrete building			V									

3	Ability to design sub- structure components of a reinforced concrete building.		\checkmark					
4	Ability to understand basic concepts of pre-stressed concrete.	\checkmark						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

COU	COURSE OUTCOMES AND GENERIC SKILLS											
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	А	K	Assessment Methods					
CO1	Ability to analyze and design super-structure components of a reinforced concrete building.	3	C4, C3	1		3, 5	Class Test, Mid-term, Pop quiz, Final Exam					
CO2	Ability to design floor system of a reinforced concrete building	3	C3	1		5	Class Test, Mid-term, Pop quiz, Final Exam					
CO3	Ability to design sub- structure components of a reinforced concrete building.	3	C3	1		5	Class Test, Mid-term, Pop quiz, Final Exam					
CO4	Ability to understand basic concepts of pre- stressed concrete.	1	C2	1		3	Class Test, Mid-term, Pop quiz, Final Exam					

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A) :							
A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity							
Bloom's Taxonomy Levels:							
C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create							
TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face to Face Learning	54						
Lecture (3 hours/week x 14 weeks)	56						
Guided Learning	15						
Tutorial/ Assignments (3 hours/week x 5 weeks)	15						
Independent Learning							
Individual learning (1-hour lecture \approx 1-hour learning)	56						
Preparation for tests and examination	27						
Assessment							
Continuous Assessment	3						
Final examination	3						
Total	160						

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments						
	1	Course overview & Fundamental behavior of	Class Test,						
		reinforced concrete column	Mid-term, Pop						
1	2	Introduction to axial compression	quiz,						
	3	Structural design of footings	Assignment,Fi nal Exam						
	4								
	5	Compression plus bending of rectangular columns &							
2	6	Interaction diagrams							
Z	7	Structural design of footings							
	8	Structural design of footings							
	9	Compression plus bending of rectangular columns &							
		Interaction diagrams and Balanced failure							
3	10	Compression plus bending of rectangular columns &							
5		Interaction diagrams and Balanced failure							
	11	Structural design of footings							
	12	Structural design of pile caps							

r			
	13	Compression plus bending of rectangular columns &	
	14	Interaction diagrams and Balanced failure	-
4	14	Compression plus bending of rectangular columns & Interaction diagrams and Balanced failure	
	15		
	15	Structural design of pile caps	-
	10	Structural design of pile caps	
	17	ACI code provisions for column design and Design aids	
5	18	Biaxial bending	-
5	10		
		Design of RCC shear wall.	-
	20	Design of RCC shear wall.	
	21	Biaxial bending	-
6	22	Biaxial bending	-
	23	Design of RCC shear wall.	
	24	Design of RCC shear wall.	-
	25	- Slender columns	
7	26		-
	27	Seismic detailing.	-
	28	Seismic detailing.	-
	29	- Slender columns	
8	30		
	31	Seismic detailing.	-
	32	Seismic detailing.	
	33	Introduction to floor systems, Design of column	
	24	supported slabs	-
9	34	Introduction to floor systems, Design of column	
	25	supported slabs	
	35 36	Introduction to Pre-stressed Concrete	-
		1st Concept of pre-stressing	-
	37	Design of column supported slabs	
10	38	Design of column supported slabs	-
	39	2nd and 3rd Concept of pre-stressing	4
	40	Type and Classification of Pre-stressing	Class Test
	41	Design of column supported slabs	Class Test, Mid-term, Pop
11	42	Design of column supported slabs	quiz,
	43	Stages of Loading in Pre-stressed Concrete Beam	Assignment,
	44	Pre-stressed Concrete materials and anchorage systems.	Final Exam
	45	Design of column supported slabs	
12	46	Design of column supported slabs	
	47	Pre-stressed Concrete materials and anchorage systems.	
	48	Pre-stressed Concrete materials and anchorage systems.	
13	49	Design of column supported slabs	
15	50	Design of column supported slabs	

	51	Losses of Pre-stressed Concrete
	52	Analysis of pre-stressed concrete beam.
	53	Design of column supported slabs
14	54	Design of column supported slabs
14	55	Preliminary Design of pre-stressed concrete beam.
	56	Preliminary Design of pre-stressed concrete beam.

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy						
Continuous Assessment		CO1 CO2 CO2							
(Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3, CO4	C2, C3, C4						
		CO1	C3, C4						
Final Exam	60%	CO2	C3						
		CO3	C3						
		CO4	C2						
Total Marks	100%								

REFERENCE BOOKS

1. Design of Concrete Structures, Arthur H. Nilson, David Darwin and Charles W. Dolan, McGraw Hill, 15th Edition.

- 2. Reinforced Concrete: Mechanics and Design, James Wight and James MacGregor, Pearson, 6th Edition.
- 3. Reinforced Concrete: A Fundamental Approach, Edward G. Nawy, Pearson, 5th Edition.
- 4. Design of Reinforced Concrete, Jack C. McCormac and James K. Nelson, John Wiley & Sons, Inc., 7th Edition.
- 5. Fundamentals of Reinforced Concrete by Ferguson & Philip
- 6. Bangladesh National Building Code -BNBC 2020
- 7. Design of Prestressed Concrete Structure by T.Y. Lin, Ned H. Burns (3rd Edition)
- 8. Prestressed Concrete Structures by Michael P Collins

Spring Semester L-4, T-I

Theoretical (Core)

COURSE INFORMATIONCourse Code: CE 413Lecture contact hoursCourse Title: Design of Steel StructuresCredit hours

: 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a design course for steel structures, especially to learn how to design and analyze the tension and compression members, bolt and weld connections. In this course, students will also be introduced with the concept of buckling, flexural and shear strength, non-sway frame etc. which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To develop a understanding of behavioural principles of structural steel.
- To gain familiarity with limit state design philosophy.
- To determine critical loading patterns for design.
- To design steel components to resist applied loads and satisfy performance objectives.
- To gain detailed knowledge pertaining to the requirements of American Institute of Steel Construction (ANSI/AISC) Standards.

COURSE CONTENT

Behavioural principles and design of structural steel; design of tension members, bolted and welded connections; compression members; residual stress, local buckling, effective length; flexural members; lateral torsional buckling; design of beam-columns; connection design, moment connections, column bases; detailing of steel structures.

COURSE OUTCOMES AND SKILL MAPPING

00													
No	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)	P01	P02	PO3	P04	PO5	P06	PO7	P08	909	PO10	P011	P012
1	Ability to design various steel structural components including tension member, compression member, flexural member.		V										

2 Ability to analyze and design beam column connections of steel structures.			\checkmark										
--	--	--	--------------	--	--	--	--	--	--	--	--	--	--

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	K	Assessment Methods
CO1	Ability to design various steel structural components including tension member, compression member, flexural member.	2	C3,C4	1,2		4, 5, 6	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to analyze and design beam column connections of steel structures.	3	C4	1,2		4, 5, 6	Class Test, Mid-term, Pop quiz, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	12
Lecture (3 hours/week x 14 weeks)	42

Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	15
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	36 22
Assessment Continuous Assessment Final examination Total	2 3 120

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments	
	1	Behaviour of structural steel	CT/ Assignment-1	
1	2	Residual stress		
	3	Compression members		
	4	Compression members		
2	5	Local buckling		
	6	Compression members		
	7	Compression members		
3 8		Tension members		
	9	Lateral torsional buckling		
	10	Lateral torsional buckling	CT/ Assignment-2	
4	11	Tension members		
	12	Lateral torsional buckling		
	13	Design of beam-columns		
5	14	Tension members		
	15	Design of beam-columns		
	16	Design of beam-columns	Mid Term/	
6	17	Tension members	Assignment-3	
	18	Design of beam-columns		
7	19	Bolted and welded connections		
/	20	Flexural members		

	21	Bolted and welded co	onnections							
	22	Flexural members								
8	23	Bolted and welded co								
	24	Flexural members	lexural members							
	25	Flexural members								
9	26	Bolted and welded co	onnections							
	27	Connection design								
	28	Connection design								
10	29	Bolted and welded co	onnections							
	30	Connection design								
	31	Connection design								
11	32	Bolted and welded co	onnections							
	33	Moment connections	5							
	34	Moment connections	5		CT/ Assignment-4					
12	35	Detailing of steel structure concrete composite s								
	36	Moment connections								
	37	Column bases	Column bases							
13	38	Introduction to steel-	Introduction to steel-concrete composite structures							
	39	Column bases	Column bases							
	40	Column bases								
14	41	Advantages of comp	osite construction							
	42	Various types of stee	el concrete composite c	olumns	-					
ASSES	SSMENT STR	• •	1							
Comp		Grading	СО	В	looms Taxonomy					
Contin Assess (Class CT/ M	ComponentsOrtalingContinuousAssessment(Class assignments/ CT/ Mid Term/ Active Class Participation)		CO1, CO2		C2, C3, C4					
			CO 1	С	3,C4					
Final	Exam	60%								
Total Marks 100%					т					

REFERENCE BOOKS

1.Steel Structures: Design and Behavior by Salmon, Johnson and Malhas (5thEdition)
2.Design of Steel Structures by – Gaylord, Gaylord
3.Limit States Design in Structural Steel by G.L. Kulak and G.V. Grondin

3.Limit States Design in Structural Steel by G L Kulak and G Y Grondin 4.AISC Manuals for Steel Constructions (13th Edition-2005)

Spring Semester L-4, T-I

Theoretical (Core)

COURSE INFORMATION								
Course Code	: CE 411	Lecture contact hours	: 3.00					
Course Title	: Structural Analysis and Design II	Credit hours	: 3.00					

PRE-REQUISITE

CE 311

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will learn how to analysis various structural components of indeterminate subjected to both static and moving loads. Analysis technique learnt here will be useful in later courses where students will learn how to design different structural components.

OBJECTIVE

- To gain knowledge on analysing the statically indeterminate beams and frames by moment distribution, consistent deformation/ flexibility and stiffness methods.
- To attain a workable knowledge on generating algorithms by using direct stiffness method using computer.
- To gain knowledge on developing influence lines of statically indeterminate beams and frames.

COURSE CONTENT

Analysis of statically indeterminate beams and frames by moment distribution, consistent deformation/flexibility and stiffness methods; algorithms for implementing direct stiffness method using computer; influence lines of statically indeterminate beams and frames.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)		PO2	PO3	P04	PO5	P06	PO7	PO8	60d	PO10	P011	P012
1	Ability to analyze statically indeterminate structures		\checkmark										
2	Ability to develop algorithms by using direct stiffness method		\checkmark										
3	Ability to solve influence lines for statically indeterminate structures												

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning

COU	COURSE OUTCOMES AND GENERIC SKILLS								
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	Y	K	Assessment Methods		
CO1	Ability to analyse statically indeterminate structures	2	C4	1		2	Class Test, Mid-term, Pop quiz, Final Exam		
CO2	Ability to develop algorithms by using direct stiffness method	2	C6	1,2,3		2, 3	Class Test, Mid-term, Pop quiz, Final Exam		
CO3	Ability to solve influence lines for statically indeterminate structures	2	C4	1,2,3		2, 3	Class Test, Mid-term, Final Exam		

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, P2: Range of conflicting requirements, P3: Depth of analysis required, P4: Familiarity of issues, P5: Extent of applicable codes, P6: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	15

Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	36
Preparation for tests and examination	22
Assessment	
Continuous Assessment	2
Final examination	3
Total	120

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments					
	1	Course overview & Fundamental principles and methods of structural analysis	CT/ Assignment-1					
1 2		Moment distribution method – Beam						
	3	Stiffness methods						
	4	Moment distribution method - Beam						
2	5	Stiffness methods						
	6	Stiffness methods						
	7	Moment distribution method - Beam						
3 8		Stiffness methods						
	9	Stiffness methods						
	10	Moment distribution method - Frame	CT/ Assignment-2					
4	11	Stiffness methods						
	12	Stiffness methods						
	13	Moment distribution method - Frame						
5	14	Stiffness methods						
	15	Direct stiffness methods						
	16	Moment distribution method - Frame	Mid Term/					
6	17	Direct stiffness methods	Assignment-3					
	18	Direct stiffness methods						
	19	Moment distribution method - Frame						
7	20	Direct stiffness methods						
	21	Flexibility method						

	22		ent distribution met		
8	23		ent distribution met	hod – Frame	
	24	Flexil	pility method		
	25	Influe	ence lines of statical	ly indeterminate beams	
9	26	Influe	ence lines of statical	ly indeterminate beams	
	27	Flexil	oility method		
	28	Influe	ence lines of statical	ly indeterminate beams	
10	29	Influe	ence lines of statical	ly indeterminate beams	
	30	Flexil	oility method		
	31	Influe	ence lines of statical	ly indeterminate frames	
11	32	Influe	ence lines of statical	ly indeterminate beams	
	33				
	34	Influe	ence lines of statical	ly indeterminate frames	CT/ Assignment-4
12	35				
	36				
	37				
13	38	Influe	ence lines of statical	ly indeterminate beams	
	39	Writin	ng computer program	ms for framed structures	
	40	Influe	ence lines of statical	ly indeterminate frames	
14	41	Influe	ence lines of statical	ly indeterminate beams	
	42	Writin	ng computer program	ms for framed structures	
ASSES	SMENT ST	RATE	GY		
Compo	onents		Grading	СО	Blooms Taxonomy
(Class a	nous Assessm assignments/ rm/ Active C pation)	CT/	40%	CO1, CO2, CO3	C4, C6
				CO 1	C4
Final E	Exam		60%	CO 2	C6
				CO 3	C4
Total M	Iarks		100%		

REFERENCE BOOKS

- 1. Structural Analysis, R C. Hibbeler, Prentice Hall, 8th Edition.
- 2. Indeterminate Structural Analysis, C K Wang, McGraw-Hill International Editions.
- 3. Matrix Analysis of Framed Structures, W. Weaver, Jr., James M. Gere, McGraw Hill, 2nd Edition.
- 4. Elementary Structural Analysis, Charles Head Norris, John Benson Wilbur and Senol Utku, McGraw Hill, 4th Edition.
- 5. Structural Analysis by Aslam Kassimali (4th Edition)
- 6. Bangladesh National Building Code (BNBC)-2020

Fall Semester L-3, T-II

Sessional (Core)

· Concrete Structures Design	COURSE INF	FORMATION	
	Course Code Course Title	: Concrete Structures Design	

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is the class room design sessional where students will be guided to design and prepare detailing of different components of a low rise masonry structure, slab bridge and balanced cantilever bridge.

OBJECTIVE

- To design a reinforced concrete low rise building.
- To design slab bridge and balanced cantilever bridge in real time project.
- To identify, formulate and solve real time RCC structures.

COURSE CONTENT (2021)

Design and detailing of a low-rise masonry building; Design and detailing of a slab bridge; Design and detailing of a balanced cantilever bridge.

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
•		PO1	PO2	PO3	PO4	PO5	P06	LOd	80d	60d	PO10	P011	PO12
1	Understand the basic concepts of limit state design	\checkmark											
2	Design different elements of a low rise masonry building.			\checkmark									
3	Design of various structural components of a slab bridge and a balanced cantilever bridge.			\checkmark									

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions,
PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7:
Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10:
Communication, PO11: Project management and finance, PO12: Life-long learning

COU	RSE OUTCOMES AND GEN	ERIC SK	ILLS	-	-	_		
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods	
CO1	Understand the basic concepts of limit state design	1	C2	1		4, 5	Class Test, Mid-term, Pop quiz, Final Exam	
CO2	Design different elements of a low rise masonry building.	3	C3	1, 5		5	Class Test, Mid-term, Pop quiz, Final Exam	
CO3	Design of various structural components of a slab bridge and a balanced cantilever bridge.	3	С3	1		5	Assignment, Pop quiz	

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 12 weeks)	36
Guided Learning Report Writing (1 hours/week x 12 weeks)	12
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	3 3

Assessment	
Continuous Assessment	3
Quiz	3
Total	60

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments	
1.	1.	Introduction to the design of a masonry building following BNBC guidelines and design of slab of a low rise masonry building.		
2.	2.	Design of beam		
3.	3.	Design of stair		
4.	4.	Design of sunshade and lintel		
5.	5.	Design of foundation]	
6.	6.	Mid Quiz		
7.	7.	Introduction on bridge design and Design of Slab Bridge with detailing	Viva/ Oral	
8.	7. Bridge with detailing 8. Introduction to the design of a balanced cantilever bridge. 8. Design of deck slab and railing of a balanced cantilever bridge. 9. Analysis of Interior Girder for dead loads and live loads		Presentation /Final Quiz	
9.				
10.	10.	Analysis of Interior Girder for dead loads and live loads		
11.	11.	Design of Interior girder		
12.	12.	Design of Exterior girder and diaphragm]	
13.	13.	Design of articulation.]	
14.	14.	Viva/ Oral Presentation/Final Quiz		

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy		
Continuous Assessment (Class performance/assignments/ Report writing/ Presentation/Viva)	50%	CO1, CO2, CO3	C2, C3		
		CO 1	C2		
Quiz	50%	CO 2	C3		
		CO 3	C3		

Total Marks	100%							
REFERENCE BOOKS								
 Design of Concrete Structures by 1 Bangladesh National Building Cool AASHTO LRFD Bridge: Design Structures Structures by 1 	le (BNBC) -	2020)					

Spring Semester L-4, T-I

Sessional (Core)

COURSE INFORMATION									
Course Code Course Title	: CE 410 : Computer Aided Analysis and Design of Bridge Structures Sessional	Lecture contact hours Credit hours	: 3.0 : 1.5						
PRE-REQUISITE									
 CE-311: Structural Analysis & Design I CE-315: Design of Concrete Structures I CE-316: Concrete Structures Design Sessional I CE-317: Design of Concrete Structures II 									
CURRICULUM STRUCTURE									

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Before starting this course, students have already sufficient knowledge in analyze and design of simple concrete structures and their components through CE-315, CE 317, CE-311 and CE-411. In this course, students will learn how to analysis more complicated and mega structures like bridge where they will learn a combination of moving load, prestressing and application of Finite Element (FE) software.

OBJECTIVE

- To analyze the precast prestressed concrete bridge structures
- To design the structural components of bridge structures
- To apply modern tool for the analysis and design of bridge structures.

COURSE CONTENT

Structural idealization, Structural idealization, Analysis, design and detailing of prestressed concrete bridges (Deck, Girder, Railing, Pier, Pile cap) as per AASHTO LRFD guideline, and computer modelling of the full-scale bridge.

COURSE OUTCOMES AND SKILL MAPPING

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		P01	P02	PO3	P04	PO5	PO6	P07	P08	909	PO10	P011	P012
1	Ability to analyse bridge structure including moving loads			\checkmark									
2	Ability to design components of bridge structure following established codes												

3 Ability to apply modern tools to accelerate the analysis and design of bridge structures													
--	--	--	--	--	--	--	--	--	--	--	--	--	--

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ч	Υ	K	Assessment Methods
CO1	Ability to analyse bridge structure	3	C4	1,3		4	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to design components of bridge structure	3	C4	1,3		5	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Ability to apply modern tools to accelerate the analysis and design of structures	5	C5	1,5		6	Assignment

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
----------------------------------	--------------------

Face to Face Learning Lecture (3 hours/week x 12 weeks)	36
Guided Learning Tutorial/ Assignments (1 hours/week x 6 weeks)	6
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	8
Preparation for tests and examination	6
Assessment Quiz+Viva	4
Total	60

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Weeks	Lectures	Торіс	Assessments		
1	1	Introduction to the PC Girder Bridge and Project Description			
2	2	Preliminary Design: Geometry Selection of Bridge Structure (PC Girder Bridge): Moving Loads on the Bridge Structures: HL-93			
3	3	Hand Calculation of Slab Design including crack width calculation	Class		
4	4Calculation of girder moment shear, distribution factor for shear and moment5Load Combinations and critical design load, Girder Design for		Class Assessment, Continuous		
5			assessment, Quiz-1, Viva-1		
6	6	Girder design for moment, prestress strand, prestress loss, bearing pad design calc			
7	7	Girder Design of Shear, all reinforcement detailing and final submission list			
8	8	Quiz-1 & Viva-1			
9	9	Bridge Modelling Using FE Software Introduction to the MIDAS-Civil			
10	10	Geometry Assignment			
11	11	Dead Load, LL, Lane Assignment on the FE Model			
12	12	Load Combinations and analysis of the Model			
13	13	Design of the PC girder and its components			
14	14	Quiz-2 & Viva-2			
ASSESS	MENT ST	FRATEGY			

Components	Grading	СО	Blooms Taxonomy
Continuous		CO1	C4
Assessment	50%	CO2	C5
(Lab Report)		CO3	C2, C3

Quiz 1 & Quiz 2	50%	CO1	C4				
Quiz 1 & Quiz 2	30%	CO2	C5				
Total Marks	100%						
REFERENCE BOOKS							
1.Bangladesh National Building Code (BNBC)-2020							
2. AASHTO LRFD Bridge: Design Specifications 2012							

Spring Semester L-4, T-I

Sessional (Core)

COURSE INFORMATION							
Course Code	: CE 414	Lecture contact hours	: 1.5				
Course Title	: Steel Structure Design Sessional	Credit hours	: 1.5				

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is the class room design sessional where students will be guided to design and prepare detailing of different components, such as tension member, compression member, connections, column base, of a low-rise steel structure as well as an industrial building. Also, student will be able to model, analyze and design steel bridge using available software's which will help them in professional career.

OBJECTIVE

- To provide adequate knowledge about tools necessary for designing steel structures.
- To analyse steel structures under gravity and lateral loads using hand calculation and computer program.
- To make familiarize with local and international design codes.
- To analyse and design of steel bridge using available computer program.

COURSE CONTENT (2021)

Analysis and design of a medium-rise steel frame building (preferably 7 storey) and a gable frame considering gravity and lateral loads; strength and serviceability check, design of individual members, connections and typical columns bases using available computer program (also check with hand calculation).

Analysis and design of a steel bridge using computer software; superstructure design; lane assignment, load assignment including vehicle live load application, analysis, design check of structural components.

COURS	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012
1	Analyse steel frame building and industrial gable frame structures.												
2	Design of different components of structures, i.e., building and roof truss			\checkmark									

3	Application of computer						
	program for analysis and design of steel buildings						
	and bridge						

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

		[[[1		
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	А	K	Assessment Methods
CO1	Analyses of integrated low rise building and industrial frame and its different components	2	C4	1		4	Class assessments/ Quiz/viva
CO2	Design of different components of structures, ie, building and roof truss	3	C3	1		5	Class assessments/ Quiz/viva
CO3	Demonstrate the application of modern tools for analysis and design of structures	5	C4	1		6	Class assessments/ viva

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	10
Lecture (1hours/week x 10 weeks)	10 15
Data analysis and calculation (1.5 hr/week X 10 weeks)	15

Guided Learning Report Writing (2 hour/week x 10 weeks)	20
Independent Learning Preparation for tests and examination	08
Assessment Quiz Viva	2.5 2
Class Performance (0.25 hr/week X 10 weeks)	2.5
Total	60

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHIN	NG SCHEDULE	
Week	Lecture Topic	Assignments
1	Introduction to the steel frame design with ETABS 2020: Project Assignments	Lab reports in every class
2	Concept and Hand Calculation of Gable frame with pitched roof system	
3	Development of the gable frame Model in ETABS 2020: Geometry, Roofing and wind loading	
4	Analysis and Design of the gable frame: Strength and Serviceability check	
5	Hand Calculation of base plate, Purlin and roofing element design	
6	Development of 7-Storey Integrated model of steel frame using ETABS: Framing System: Geometry, Wind and Earthquake Loading	
7	Analysis of the building: Check the serviceability and design demands	
8	Quiz-1 and Viva	
9	Introduction to SAP 2000 with the analysis of a simple beam element: Project Assignment	
10	Influence lines, Modelling vehicle live load with lanes in SAP 2000	
11	Development of the 100m warren truss bridge: Geometry, loading and vehicle live load etc	

12	Calculation of de warren truss, trus calculation	d		
13	Design of the tru	ss bridge and its co	omponents	
14		Viva and Q	uiz-2	
ASSESS	MENT STRATEG	Y		
Compone	ents	СО	Blooms Taxonomy	
Continuous Assessment/ Viva/ Reports		40%	CO1, CO2, CO3	C3, C4
			CO 1	C4
Quiz		60%	CO 2	C4
			CO 3	C4
Total Mar	'ks	100%		
REFERE	ENCE BOOKS			
	0	•	mon, Johnson and Malhas	

2. Limit States Design in Structural Steel by G L Kulak and G Y Grondin3. AASHTO LRFD Bridge: Design Specifications 2012

Fall Semester L-4, T-II

Sessional (Elective)

COURSE INFORMATION											
Course Code: CE 412Lecture contact hours: 3.0											
Course Title	Course Title : Concrete Structures Design Sessional II Credit hours : 1.5										
PRE-REQUIS	SITE										
CE-315: DCE-316: C											
CURRICULUM STRUCTURE											
Outcome Based Education (OBE)											

SYNOPSIS/RATIONALE

It is a design course for reinforced concrete structures, especially to learn how to analyze and design different components of RC building by hand and apply modern tools like computer software to accelerate the analysis and design process. Students will understand the general structural behaviour and design concepts of RC building structures.

OBJECTIVE

- To develop a deep understanding of behavioural principles of reinforced concrete frame structure.
- To analysis and design of different components of RC buildings under wind and seismic application.
- To apply Finite Element based tools to check and accelerate the analysis and design of building structures.

COURSE CONTENT

Analysis and design of RC moment frame buildings for wind and seismic application; multi-storeyed RC buildings with shear wall and mat foundation for wind and seismic application; Analysis and Design using Finite Element Software like ETABS and SAP2000.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		P01	P02	P03	P04	PO5	PO6	P07	PO8	909	PO10	P011	P012
1	Ability to analyse a frame structure for combined gravity and lateral.		\checkmark										
2	Ability to design various components of concrete and steel moment frame building subjected to gravity and lateral loads.			V									

3	Ability to apply modern tools for analysis and design of structures and individual components			\checkmark				

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	А	K	Assessment Methods
CO1	Ability to analyse an RC moment frame building for lateral loads.	2	C4	1,3		4	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to design various components of RC moment frame building.	3	C5	1,2		5	Class Test, Mid-term, Final Exam
CO3	Ability to apply modern tools for analysis and design of structures and individual components	5	C5	1,5		5	Quiz and Continuous Assessment

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Face to Face Learning Lecture (3 hours/week x 12 weeks)	36
Guided Learning Tutorial/ Assignments (1 hours/week x 6 weeks)	6
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning) Preparation for tests and examination	8 7
Assessment Quiz+Viva	3
Total	60

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Weeks	Lectures	Торіс	Assessments
1	1	 Introduction Acquaintance with individual data Load Calculation for slab and beam 	
2	2	• Slab design	Assignment,
3	3	Earthquake and Wind load Calculation	Continuous
4	4	Moment Distribution on frame	Assessment,
5	5	• Design of the beam and column	Quiz-1
6	6	Design of Pile and Pile Cap	
7	7	• Quiz 1, Viva	
8	8	• Introducing the building plan and the individual design data to students.	
9	9	Acquaintance with the interface of ETABS 2015Defining grid, material properties and section properties	
10	10	• Complete modelling of an 8 storied residential building.	
11	11	 Assigning gravity load with appropriate load combinations to the model and interpretation of the analysis results. Assigning lateral loads according to BNBC 2020. Interpretation of the analysis results and checking the design output parameters with hand calculation. 	Assignment, Continuous Assessment, Quiz-2
12	12	Design of foundation	
13	13	Design of Shear wall	
14	14	Mid Term Quiz + Viva	

ASSESSMENT STRATEGY										
Components	Grading	СО	Blooms Taxonomy							
Continuous		CO1	C4							
Assessment	40%	CO2	C5							
(Lab Report)		CO3	C3							
Oniz 1 β Oniz 2	600/	CO1	C4							
Quiz 1 & Quiz 2	60%	CO2	C5							
Total Marks	100%									
REFERENCE BOOKS										
1.Design of Concrete Struc	tures by – Winter & Nilson (10	Oth Edition)								
2. Design of Concrete Struc	tures by - Nilson (12th Edition)								
3. Design of Bridge Structu	res by – Jayaram									
4. Bangladesh National Bui	lding Code (BNBC)'20									

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION									
Course Code Course Title	: CE 429 : Design of Steel Concrete Composite Structure	Lecture contact hours Credit hours	: 2.00 : 2.00						

PRE-REQUISITE

CE 317 Design of Concrete Structures II, CE 319 Design of Steel Structures

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will learn about different types of steel-concrete composite columns and floor system. They will also learn to analyze and design different components of composite structures.

OBJECTIVE

- To understand the behavior of steel concrete composite structure
- To evaluate the load carrying capacity of various types of steel concrete composite columns
- To analyze and design of steel concrete floor system

COURSE CONTENT

Introduction to steel-concrete composite structures; advantages of composite construction; interaction between steel and concrete, shear connectors, elastic analysis of composite beams, beam-column connections, behaviour of different types of composite columns, axial load capacity and interaction diagrams for composite columns

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES (COs)				PROC	GRAM	ME O	UTCO	OMES	(POs	5)		
	(COS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
1	Ability to understand the behavior of steel concrete composite structure												
2	Ability to evaluate the load carrying capacity of various types of steel concrete composite columns		\checkmark										
3	Ability to analyze and design of steel concrete floor system			\checkmark									

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	А	K	Assessment Methods
CO1	Ability to understand the behavior of steel concrete composite structure	1	C2	1,2		4	Class Test, Mid-term, Final Exam
CO2	Ability to evaluate the load carrying capacity of various types of steel concrete composite columns	2	C5	1,2		4	Class Test, Mid-term, Final Exam
CO3	Ability to analyze and design of steel concrete floor system	3	C4	1,2		4	Class Test, Mid-term, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28
Guided Learning	10

Tutorial/ Assignments (2 hours/week x 5 weeks)	
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	24
Preparation for tests and examination	13
Assessment	
Continuous Assessment	2
Final examination	3
Total	80

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACH	TEACHING SCHEDULE					
Weeks	Lectures	Topics	Assessments			
1	1	Introduction to Steel Concrete Composite Structure, Advantages of composite construction	Lecture notes, Reference texts, etc.			
1	2	Advantages and disadvantages different types of composite column, Shear connector	-			
2	3	Load carrying capacity of FEC column under axial compression	_			
	4	Load carrying capacity of FEC column under axial compression				
3	5	Load carrying capacity of FEC column under axial tension				
	6	Load carrying capacity of eccentrically loaded FEC column				
4	7	Load carrying capacity of eccentrically loaded FEC column				
	8	Load Transfer mechanism of FEC column				
	9	Load Transfer mechanism of FEC column	_			
5	10	Load carrying capacity of CFT column under axial compression				
6	11	Load carrying capacity of CFT column under axial compression				
	12	Load carrying capacity of CFT column under axial tension				

Total Ma	rks	100%		
			CO 3	C4
Final Ex	am	60%	CO 2	C5
			CO 1	C2
CT/ Mid		40%	CO1, CO2, CO3, CO4	C2,C4,C5
Compon	ents	Grading	СО	Blooms Taxonomy
ASSESS	MENT STRA	TEGY		
14	28	Composite girder design		
1.4	27	Composite girder design		—
13	26	Composite beam design		
	25	Composite beam design		<u> </u>
12	24	Composite beam design		
	23			
11		Behavior and analysis of	-	
		Behavior and analysis of	-	
10		Behavior and analysis of	composite beams	
10		Construction stages, Desi lesign guideline	gn Consideration, AISC	
	18	Introduction to steel conc	rete floor system	
9	-	compression	f PEC column under axial	
		Load Transfer mechanism		
8		Load Transfer mechanism		
		Load carrying capacity of column	`	
7		column	f eccentrically loaded CFT	

REFERENCE BOOKS

- Steel Structures: Design and Behavior by Salmon, Johnson and Malhas (5th Edi)
 Limit States Design in Structural Steel by G L Kulak and G Y Grondin
 AISC design guide 2014

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INI	FORMATION		
Course Code Course Title	: CE 415 : Prestressed Concrete	Lecture contact hours Credit hours	: 2.00 : 2.00
PRE-REOUIS	SITE		

CE 317

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is an advanced design course for prestressed concrete structures, provides knowledge about prestressing materials, loss estimation of prestressed concrete member and analysis and design of section for flexure, bond and bearing. Students can familiar with composite sections, beam deflections, layout of cable and partial prestressing etc. In this course, students will also be introduced about the design prestreesd concrete beam with simple and continuous span, as per AASHTO Code as well as design consideration for prestressed concrete pipes, piles, poles and railway sleepers which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To be able to understand mechanism of prestressed concrete structure.
- To be able to perform analysis and design of prestressed concrete members.
- To be able to design prestressed beam with (Simple and continuous span) according code provision.
- To gain knowledge about the design consideration of prestressed concrete pipes, poles and railway sleepers.

COURSE CONTENT

Prestressed Concrete: concepts of prestressing; materials; anchorage systems; loss of prestress; analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections; beam deflections; cable layout; partial prestress.

Design of prestressed concrete beams for simple and continuous spans; ideas about use of AASHTO – PCI sections for standard spans; design considerations for prestressed concrete pipes, piles, poles and railway sleepers.

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES			P	ROG	RAM	ME O	UTC	OME	S (PC) s)		
	(COs)			1							0	1	5
		PO1	PO2	PO3	P04	P05	P06	PO7	PO8	PO9	PO10	POI	PO13
1	Ability to understand the mechanism of prestressed concrete	\checkmark											

	structure and loss estimation.														
2.	Ability to Analyze the section for flexure, shear and bond including end block.		\checkmark												
3	Ability to analyze the composite section, and determine beam deflections.														
4	Ability to design prestressed concrete beam as per code.														
5	Understand the design considerations for prestressed concrete pipes, piles, poles and railway sleepers.	V													
	ions, PO4: Investigation, P	O5 : N	Aoder	n to	ol usa	age,	PO6	6: Tl	he en	ginee		l soc	iety	, P C)7 :
		O5 : N	Aoder	n to	ol usa	age,	PO6	6: Tl	he en	ginee	r and	l soc	iety	', PC)7 :
Envi Com COU	tions, PO4 : Investigation, P ronment and sustainability, imunication, PO11 : Project JRSE OUTCOMES AND	O5: N PO8: mana GEN	Aoder Ethic gemen ERIC	n to s, P nt ai	ol usa O9: 1 nd fin	nge, Indi anc S	PO6 vidua	6: Tl al ar	he eng nd tea	ginee .mwc	r and rk, I	1 soc PO1(iety):		07:
Envi Com	ronment and sustainability, munication, PO11 : Project J RSE OUTCOMES AND	O5: N PO8: mana	Aoder Ethic gemen ERIC	n to s, P nt ai	ol usa O9 : 1 nd fin	age, Indi anc S	PO6 vidua	5: Tl al ar D12	he eng nd tea	ginee .mwc	r and rk, I	1 soc PO1(iety):		07:
Envi Com COU	ronment and sustainability, munication, PO11: Project JRSE OUTCOMES AND Course Outcomes Ability to understand the mechanism of	O5: N PO8: mana GEN	Aoder Ethic gemen ERIC	n to es, P nt ai	ol usa O9: 1 nd fin CILL	age, Indi anc S	PO6 vidua e, PC	5: Tl al ar D12	he eng nd tea : Life	ginee .mwc	r and rk, I g lear	Cl	ass '	Methods Lest	,
Envi Com COU	ronment and sustainability, munication, PO11: Project JRSE OUTCOMES AND Course Outcomes Ability to understand the mechanism of prestressed concrete structure and loss estimation. Ability to analyze the section for flavure	O5: N PO8: mana GEN GEN	Aoder Ethic gemen ERIC	n to es, P nt ai C SK	Bloom, s Bloom, s Taxonomy	age, Indi anc S	PO6 vidua e, PC	5: TI al an D12	he eng nd tea : Life	ginee mwc -long 5	r and rk, I g lear	Cl M PC Cl M Pc Cl M Pc	asss' asss' id-te ass'	Test Test Test erm,	,

CO4	Ability to design prestressed concrete beam with (Simple and continuous span) as per code.	3	C3	1,3,5	4,5	Class Test, Mid-term, Pop quiz, Final Exam
CO5	Understand the design considerations for prestressed concrete pipes, piles, poles and railway sleepers.	1	C5	1	4	Class Test, Pop quiz, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (4 hours/week x 3 weeks)	12
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	20 15
Assessment Continuous Assessment Final examination Total	2 3 80
TEACHING METHODOLOGY	

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEAC	TEACHING SCHEDULE				
Week	Lectures	Topics	Assessments		
1	1	Basic Concept of Prestressing methods.	CT/ Assignment-1		
1	2	Basic Concept of Prestressing methods.			
2	3	Prestressing materials, Anchorage system.			
2	4	Loss of prestress for beam.			
2	5	Loss estimation of prestress beam (Math)			
3	6	Analysis of section for flexure.			
4	7	Analysis of section for flexure.	CT/ Assignment-2		
4	8	Analysis of section for shear			
F	9	Analysis of section for bond and bearing.			
5	10	End Block analysis of member.			
(11	Analysis of Composite section.	Mid Term/		
6	12	Analysis of Composite section.	Assignment-3		
7	13	Analysis of Composite section.			
7	14	Beam deflections; cable layout; partial prestress			
	15	Beam deflections; cable layout; partial prestress			
8	16	Design of prestressed concrete beams for simple spans.			
	17	Preliminary Design of beam.			
9	18	Design of prestressed concrete beams for simple spans;			
10	19	Design of prestressed concrete beams for simple spans;			
10	20	Design of prestressed concrete beams for continuous spans;			
	21	Design of prestressed concrete beams for continuous spans;			
11	22	Design of prestressed concrete beams for continuous spans;			
10	23	Ideas about use of AASHTO – PCI sections for standard spans;	CT/ Assignment-4		
12	24	Ideas about use of AASHTO – PCI sections for standard spans;			
13	25	Design considerations for prestressed concrete pipes, piles.			

		Design consideration pipes, piles.			
1.4					
14		Design consideration poles and railway s	ons for prestressed concrete leepers.		
ASSES	SSMENT STR	ATEGY			
Comp	onents	Grading	СО	Blooms Taxonomy	
CT/M		40%	CO1, CO2, CO3, CO4, CO5	C2, C3, C5	
			CO 2	C3	
Final 1	Fyam	60%	CO 3	C2, C3	
1 mai 1	LAdill	0070	CO 4	C3	
			CO5	C5	
Total N	Marks	100%			
REFE	RENCE BOO	KS			

3. AASHTO-LRFD CODE 2012.

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION											
Course Code	: CE 417	Lecture contact hours	: 2.00								
Course Title	: Design of Concrete Structures III	Credit hours	: 2.00								
PRE-REQUISITE											
CE 315, CE 317											
CURRICULUM STRUCTURE											

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is an advanced design course for reinforced concrete structures, provides knowledge about design and analyzes of structural component for torsion, design of slab system, deep beam design, slender column etc. In this course, students will also be introduced about the design and detail drawing of reinforcement at joint and lift cores, diaphragm which will be useful in various projects and in their professional life.

OBJECTIVE

- To gain knowledge on the advance topic of reinforced concrete structure.
- To become skilled at the design of slab and torsion for beam.
- To become aware of the lateral load resisting design and detailing of concrete structures.

COURSE CONTENT

Analysis and design for torsion; design of one way and two-way joist slabs with or without beam on the column line; slender columns; strut-and-tie models (design of deep beam), design of reinforcement at joints; design and detailing of lateral load resisting components. lift cores, diaphragm etc.

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
•	(COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	909	PO10	PO11	PO12
1	Ability to Analyse the components of structure under torsion.		\checkmark										
2	Ability to design the structural components of a reinforced concrete slabs and columns.		\checkmark										
3	Ability to produce details structural drawings for lateral load resisting components.		\checkmark										

4	Ability to apply the strut- and-tie models concept for deep beam design.	\checkmark									
Prog	ram Outcomes (PO):										
PO1 : Engineering knowledge, PO2 : Problem analysis, PO3 : Design/development of solutions, PO4 : Investigation, PO5 : Modern tool usage, PO6 : The engineer and society, PO7 : Environment and sustainability, PO8 : Ethics, PO9 : Individual and teamwork, PO10 : Communication, PO11 : Project management and finance, PO12 : Life-long learning											
COURSE OUTCOMES AND GENERIC SKILLS											
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	Α	K	Assessment Methods				
CO1	Ability to Analyse the components of structure under torsion.	2	C4	1, 2		3, 4, 5	Class Test, Mid-term, Pop quiz, Final Exam				
CO2	Ability to Design the structural components of a reinforced concrete slabs and columns.	2	C4	1, 2		3, 4, 5	Class Test Mid-term, Pop quiz, Final Exar				
CO3	Ability to produce details structural drawings for lateral load resisting components.	2	C4	1,5		3, 4, 5	Class Test, Mid term				
CO4	Ability to apply the strut-and-tie models concept for deep beam design.	1	C3	1,5		3, 4, 5	Mid-term, Final Exam				

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	24 13
Assessment Continuous Assessment Final examination	2 3
Total	80

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING S	SCHEDULE

TEACHING SCHEDULE									
Week	Lectures	Topics	Assessments						
1	1	Analysis of Structural Component for Torsion	CT/ Assignment-1						
1	2								
2	3	Design of Components for Torsion.							
2	4	Design of Components for Torsion.							
	5	Preliminary Guideline of one way joist slab system							
3	6	Preliminary Guideline of two way joist slab system							
4	7	Design of slab with beams on column line							
4	8	Design of slab with beams on column line							
F	9	Design of slab with beams on column line							
5	10	Design of slab without beams on column line							
C	11	Design of slabs without beams on column line.	Mid Term/						
6	12	Design of slabs without beams on column line.	Assignment-2						
7	13	Design of Slender Column.							
7	14	Design of Slender Column.							
0	15	Design of Deep Beam (Strut and Tie Model)							
8	16	Design of Deep Beam (Strut and Tie Model)							

0	17	Design of Deep Bear	n (Strut and Tie Model)					
9	18	Design of Deep Beam (Strut and Tie Model)						
10	19	Design of reinforcem						
10	20	Design of reinforcem	ent at joints					
11	21	Design of reinforcem	ent at joints					
11	22	Design of reinforcem	ent at joints					
12		CT/ Assignment-3						
12	24							
10	25	Guideline of detailin	g of lift cores					
13	26							
	27							
14	28	Design of diaphragm						
ASSES	SMENT STR	ATEGY						
Components		Grading	СО	B	looms Taxonomy			
- · F ·								
Continu Assessr (Class a CT/ Mi	lous	40%	CO1, CO2, CO3	C	4			
Continu Assessr (Class a CT/ Mi	ious nent assignments/ d Term/ Active		CO1, CO2, CO3	C4				
Continu Assess (Class a CT/ Mi Class P	ious nent assignments/ d Term/ Active articipation)	·			4			
Continu Assessr (Class a CT/ Mi	ious nent assignments/ d Term/ Active articipation)		CO 1	C ₄	4			
Continu Assess (Class a CT/ Mi Class P	ious nent assignments/ d Term/ Active articipation)	·	CO 1 CO 2	C4 C4	4 4			

1. Design of Concrete Structures, Arthur H. Nilson, David Darwin and Charles W. Dolan, McGraw Hill, 15th Edition.

2. Reinforced Concrete: Mechanics and Design, James Wight and James MacGregor, Pearson, 6th Edition.

3. Reinforced Concrete: A Fundamental Approach, Edward G. Nawy, Pearson, 5th Edition.

4. Design of Reinforced Concrete, Jack C. McCormac and James K. Nelson, John Wiley & Sons, Inc., 7th Edition.

5. Bangladesh National Building Code (BNBC) 2020

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION									
Course Code Course Title	: CE 419 : Introduction to Finite Element Method	Lecture contact hours Credit hours	: 2.00 : 2.00						
PRE-REQUISITE									

CE 411

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course provides basic knowledge on the application of finite element analysis to engineering applications in linear structural mechanics. The course analyses critically problems involving one, two and three-dimensional idealizations. The topics covered include steps in the finite element modelling process, behaviour of spring, truss, beam, plane stress/strain and three-dimensional finite element modelling approaches in structural mechanics.

OBJECTIVE

- Implement the basics of FEM to relate stresses and strains.
- Formulate Integral Formulations and their application in the Finite Element Method.
- Solve 1D, 2D and 3D problems using the Finite Element Analysis approach.

COURSE CONTENT

Introduction to finite element method as applied to stress analysis problems; basic equations in elasticity, matrix displacement formulation, element shapes, nodes, nodal unknowns and coordinate system, shape functions, strain displacement matrix, methods for assembling stiffness equations e.g. direct approach, Galerkin's method, virtual work method; introduction to isoparametric formulation; discritization of a structure and mesh refinement, one-dimensional stress deformation and two-dimensional plane stress and plane strain analysis of stress-deformation problems; integral formulations, weighted residual methods, variational approach; numerical integration and computer application.

	COURSE OUTCOMES AND SKILL MAPPING												
No	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)	PO1	PO2	PO3	P04	P05	P06	PO7	PO8	60d	PO10	P011	P012
1	Understand various concepts used in finite element method	\checkmark											
2	Analyze the one- dimensional problems using various methods		\checkmark										

3 Analyze the two- dimensional problems												
--	--	--	--	--	--	--	--	--	--	--	--	--

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	K	Assessment Methods	
CO1	Understand various concepts used in the finite element method	1	C2	1, 3		2	Class Test, Mid-term, Pop quiz, Final Exam	
CO2	Analyze the one- dimensional problems using various methods	2	C4	1		3	Class Test, Mid-term, Pop quiz, Final Exam	
CO3	Analyze the two- dimensional problems	2	C4	1		3	Class Test, Mid-term, Final Exam	

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
----------------------------------	--------------------

Lecture (2 hours/week x 14 weeks)	28			
Guided LearningTutorial/ Assignments (2 hours/week x 5 weeks)10)			
Independent Learning				
Individual learning (1-hour lecture \approx 1-hour 24	1			
learning)13Preparation for tests and examination13	3			
Assessment				
Continuous Assessment 2				
Final examination 3				
Total 80)			
TEACHING METHODOLOGY				
Lecture and Discussion, Co-operative and Collaborative Method, Problem I (PBL)	Based Learning			
TEACHING SCHEDULE				
Week Lectures Topics	Assessments			
method	CT/ Assignment-1			
1 2 Introduction to finite element analysis, approach method				
3 Direct methods, stiffness method, elements and nodes				
2 4 Direct methods, stiffness method, elements and nodes				
5 One-dimensional bar members, local and global coordinate systems, global matrix				
3 6 One-dimensional bar members, local and global coordinate systems, global matrix				
7 One-dimensional bar members, local and global coordinate systems, global matrix				
4 8 One-dimensional bar members, local and global coordinate systems, global matrix				
9 One-dimensional bar members, local and global coordinate systems, global matrix	Mid Term Exam/ Assignment – 2			
5 10 One-dimensional bar members, local and global coordinate systems, global matrix				
6 11 Two-Dimensional (2D) Element				

	13	Two-Dimensional (2D)	Element						
7	14 7	Two-Dimensional (2D)							
0	15	Basic concepts of plane							
8	16 I	Basic concepts of plane	asic concepts of plane stress and plane strain						
0		Modeling techniques use	CT/ Assignment-3						
9		Modeling techniques use analysis							
10		Integral Formulations ar The Finite Element Met							
10		Integral Formulations ar The Finite Element Met							
11		Integral Formulations ar The Finite Element Met							
11		22 Integral Formulations and Their Application in The Finite Element Method							
	23								
12	24	Three-Dimensional Stre							
12	25 1	Introduction to Finite El	ement Software						
13	26 1	Introduction to Finite El	ement Software						
	27 1	Introduction to Finite El	ement Software						
14	28 1	Introduction to Finite El	ement Software						
ASSE	SSMENT STRA	ATEGY							
Comp	onents	Grading	СО	Blooms Taxonomy					
CT/M		40%	CO1, CO2, CO3	C2, C4					
Final Exam			CO 1	C2					
		60%	CO 2	C4					
			CO 3	C4					
Total	Marks	100%							

REFERENCE BOOKS

- 1. Bathe, K.J., "Finite Element Procedures", 1996.
- 2. Zienkiewicz, O.C. and Morgan, K., "Finite Elements and Approximation", John Wiley and Sons, 1983.
- 3. Cook, R.D., "Finite Element Modelling for Stress Analysis", John Wiley and Sons, 1995.
- 4. D.L. Logan, "A First Course in the Finite Element Method", Third Edition, Thomson Learning, 2001, TA347.F5L 64.
- 5. J.N. Reddy, "An Introduction to the Finite Element Method", Second Edition, McGraw-Hill International Editions, Singapore.
- 6. Grandin, H., "Fundamentals of the Finite Element Method", Macmillan Publishing Company, 1986.
- 7. Weaver, W. And Johnston, P.R., "Finite Elements for Structural Analysis", Prentice-Hall, 1984.
- 8. Beer, G. And Watson, J.O., "Introduction to Finite and Boundary Element Methods for Engineers", John Wiley and Sons, 1992.

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION									
Course Code: CE 421Lecture contact hours: 2.00									
Course Title	: Dynamics of Structures	Credit hours	: 2.00						
PRE-REQUISI	TE								
None									
CURRICULUN	CURRICULUM STRUCTURE								

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Structural dynamics is a basic course in defining and understanding dynamic problems mainly related to civil engineering. The course is intended to provide necessary knowledge to establish the equations of motion and for the determination of structural response from dynamic loads and experience in the modeling and calculation of dynamic response for simple structural systems. The knowledge gained through this course will be useful later on in various projects.

OBJECTIVE

- Learn how to model single-degree and vibratory systems and calculate the free and forced response of these systems.
- Ability to apply the structural dynamics theory to real world problems like seismic analysis and design of structures.

COURSE CONTENT

Single degree of freedom system, free vibration response; response to harmonic, impulse and general dynamic loading; numerical evaluation of dynamic response; earthquake response of linear system; two degrees of freedom system; response spectrum analysis.

No.	COURSE		PROGRAMME OUTCOMES (POs)										
	OUTCOMES (COs)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
1	Ability to demonstrate the dynamic behaviour of structural systems												
2	Ability to find response of structural systems under dynamic load												
3	Ability to devise mathematical model for solving field problems			\checkmark									

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COUR	COURSE OUTCOMES AND GENERIC SKILLS											
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	А	K	Assessment Methods					
CO1	Ability to demonstrate the dynamic behaviour of structural systems	2	C3	1,2		2	Class Test, Mid Term, Final and class participation					
CO2	Ability to find response of structural systems under dynamic load	2	C4	1,2		2, 3	Class Test, Mid Term, Final and class participation					
CO3	Ability to devise mathematical model	3	C6	1,3		4	Class Test, Mid Term, Final and class participation					

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	
(2 hours/week x 14 weeks	28

	Learning	
Tutorial	/ Assignments (2 hours/week x 5 weeks)	10
Individu learning	indent Learning inal learning (1 hour lecture \approx 1 hour) ition for tests and examination	24 13
Assessn		15
	z/Class Test/Mid-Term Exam	03
	amination	02
Total		80
TEACH	HING METHODOLOGY	
Lecture	and Discussion, Problem Based Learning (PE	BL)
TEACI		
Week	HING SCHEDULE Topics	Assessments
	Dynamics of single-degree-of-freedor	
1	systems	
2	Equations of Motion, Problems and Solutions	
3	Undamped Free Vibration, Viscously	ý.
4	Damped Free Vibration Energy in Free Vibration	
5	Response to Harmonic and Periodic Excitations	
6	Systems with Nonviscous Damping, Response to Periodic Excitation	,
7	Response to Arbitrarily Time-Varyin Forces, Response to Step and Ramp For	-
8	Response to Pulse Excitations	Pop Quiz/Class Test/Mid-
9	Earthquake Excitation and Motion, Response Spectrum Analysis	Term Exam
10	Systems with Distributed Mass and Elasticity	
11	Natural Vibration Frequency by Rayleigh's Method	
12	One-Story Unsymmetric-Plan Building	gs,
10	Multistory Unsymmetric-Plan Buildin	gs
13		

ASSESSMENT ST	ASSESSMENT STRATEGY									
ComponentsGradingCOBlooms Taxonomy										
Continuous assessment	40%	CO1, CO2, CO3	C3, C4, C6							
		CO 1	C3							
Final examination	60%	CO 2	C4							
		CO 3	C6							
Total Marks	100%									
REFERENCE BO	OKS									
Edition by Anil	 Dynamics of Structures - Theory and Applications to Earthquake Engineering, 5th Edition by Anil K. Chopra, Pearson Prentice Hall, 2016 Dynamics of Structures - R.W. Clough and J. Penzien, 2nd Edition 									

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION									
Course Code	: CE 423	Lecture contact hours	: 2.00						
Course Title	Course Title : Structural Safety Credit hours : 2.00								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The method for safety evaluation and risk assessment of civil structures will be studied. Definition of loadings and structural safety will be given in a probabilistic framework. Risk assessment of civil structures in earthquake regions will be analyzed with details. The knowledge gained through this course will be useful later on in various projects.

OBJECTIVE

- The student will gain a basic understanding of and a general awareness on safety aspects in structural and civil engineering, and will be able to judge whether it is necessary to account for uncertainties in engineering problems.
- When simplified deterministic procedures are applied, the student can critically reflect the implications of the simplifications.
- With basic understanding the student will be able to ask the right questions also for more advanced problems and might consult experts for their solution.

COURSE CONTENT

Structural Safety is a course to integrate risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems, especially RCC and steel structures. Its purpose is to gain in-depth knowledge about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment. All aspects of quantitative safety assessment and to addresses the protection of structures and infrastructure such as buildings and bridges both RCC and Steel structures exposed to multiple hazards, including earthquakes, cyclones, fire hazards, hurricane, surge or corrosion.

No.	COURSE		PROGRAMME OUTCOMES (POs)										
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	P011	P012
1	Formulate simple probabilistic models that represent relevant engineering phenomena		\checkmark										

2	Define adverse events (like failure or malfunction) in terms of limit states and assess the probability of these adverse events		\checkmark							
3	Perform the reliabilit based calibration of structural codes	у	\checkmark							
PO1: soluti PO7: Comr	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 									
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	P	A	K	Assessment Methods			
CO1	Formulate simple probabilistic models that represent relevant engineering phenomena	mple		1,2		2, 3	Class Test, Mid Term, Final and class participation			
CO2	Define adverse events (like failure or malfunction) in terms of limit states and assess the probability of these adverse events	4	C2, C3	1,3		4	Class Test, Mid Term, Final and class participation			
CO3	Perform the reliability based calibration of structural codes	3	C4, C5	1,5		5	Class Test, Mid Term, Final and class participation			

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

<u>Complex Engineering Problem (P)</u>:

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	
(2 hours/week x 14 weeks	28
Guided Learning	
Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning	
Individual learning (1 hour lecture \approx 1 hour	24
learning)	
Preparation for tests and examination	13
Assessment	
Pop Quiz/Class Test/Mid-Term Exam	03
Final examination	02
Total	80
TEACHING METHODOLOGY	

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACH	HING SCH	EDULE				
Week	Topics		Assessments			
1	Review of	conceptual desig	gn			
2	Review of	probability theory	ry			
3	Structural	Component relia	bility analysis			
4	Analysis of analysis	of uncertainties - I	Bayesian Reliability	-		
5	Structural	Systems Reliabil	ity analysis			
6	Simulation	n methods				
7	Probabilis	tic codified Desig	gn		r• 1	
8	Examples	of "Robust" struc	ctural design	Pop Quiz/Class Test/M Term Exam	1 d -	
9	Examples	of structural failu	ıres			
10	The role o reliability	f conceptual desi	gn in structural			
11	System Re	eliability				
12	Structural	Code Concepts,	Code Calibration			
13	Re-evalua	tion of the safety	of existing structures			
14	Aspects of	f quality control				
ASSES	SMENT ST	RATEGY				
Compo	nents	Grading	СО	Blooms Taxonomy	y	
Continuous assessment		40%	CO1, CO2, CO3	C2, C3, C4, C5		
		CO 1		C3, C4		
Final ex	amination	60%	CO 2	C2, C3		
			CO 3	C4, C5		

REFERENCE BOOKS

Total Marks

- 1. AISC Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-10
- 2. Structural Seismic Design Optimization and Earthquake Engineering: Formulation and Applications by Vagelis Plevris, Chara Ch. Mitropoulou, Nikos D Lagaros, 2012
- 3. Computational Methods in Earthquake Engineering by Papadrakakis, Fragiadakis and Lagaros, 2011

4. Journal of Structural Safety by Elsevier (for case studies)

100%

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION											
Course Code	: CE 427	Lecture contact hours	: 2.00								
Course Title	: Advanced Solid Mechanics	Credit hours	: 2.00								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will teach the students to solve problems in solid mechanics which cannot be satisfactorily addressed by the approaches of mechanics of materials. The focus is on analytical methods and introductions to numerical methods are also covered. The knowledge gained through this course will be useful later on in various projects.

OBJECTIVE

- To expand on the basic principles established previously in Solid Mechanics.
- To consolidate the solid mechanics principles presented in the student's Engineering degree, and the equip students with skills required to solve a range of engineering problems they have not seen before.

COURSE CONTENT

Stress, strain and displacements in two and three dimensions. Constitutive equations. Governing equations of elasticity and simple solutions, Formulation of basic equations of elasticity in solid mechanics, Strain energy. Theories of failure.

No.	COURSE]	PROGR	RAM	IME (OUTC	COME	ES (P	Os)		
	OUTCOMES (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Solve problems in elasticity using fundamental equations	\checkmark											
2	Evaluate the principal stress and principal strain for a given state of stress or strain		\checkmark										
3	Formulate the usage of energy methods for solving structural problems			V									

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning

COUR	SE OUTCOMES A	ND GENER	RIC SKIL	LS			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	A	K	Assessment Methods
CO1	Solve problems in elasticity using fundamental equations	1	C2,C3	1, 2		2	Class Test, Mid Term, Final and class participation
CO2	Evaluate the principal stress and principal strain for a given state of stress or strain	2	C5	1,2		2	Class Test, Mid Term, Final and class participation
CO3	Formulate the usage of energy methods for solving structural problems	3	C2,C3	1,3		3	Class Test, Mid Term, Final and class participation

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	

Independen Individual le learning) Preparation f Assessment	signments (2 hours/week x 5 weeks) at Learning earning (1 hour lecture \approx 1 hour for tests and examination		10 24					
Independen Individual le learning) Preparation f Assessment Pop Quiz/Cl	At Learning earning (1 hour lecture \approx 1 hour for tests and examination							
Individual le learning) Preparation f Assessment Pop Quiz/Cl	earning (1 hour lecture \approx 1 hour for tests and examination		24					
Pop Quiz/Cl		24						
Pop Quiz/Cl								
-	ass Test/Mid-Term Exam		03 02					
Total			80					
TEACHING	G METHODOLOGY							
Lecture and	Discussion, Problem Based Learning ((PBL)						
TEACHING	G SCHEDULE							
Week To	opics		Assessments					
1 Int	roduction to stress analysis in elastic se	olid						
	drostatic and deviatoric stress compon tahedral shear stress	ents,						
3 An	alogy between stress and strain tensors	S						
4 Co law	nstitutive equations – generalized Hoo v	ke"s						
5 Eq	uations for linear elastic isotropic solic	ls						
6 for	undary conditions – St. Venant"s print end effects Uniqueness theorem	ciple						
	ane stress and plane strain problems		Pop Quiz/Class Test/Mid- Term Exam					
8 Str	ress compatibility equation - Plane Stre	ess						
9 Str	ress compatibility equation - Plane Stra	in						
rela	uilibrium equations, strain-displaceme ations	nt						
11 Ax	isymmetric problems							
12 Str	rain tensor							
13 Co	mpatibility conditions							
14 Re	lation among elastic constants							

ASSESSMENT ST	ASSESSMENT STRATEGY									
Components	Grading	СО	Blooms Taxonomy							
Continuous assessment	40%	CO1, CO2, CO3	C2, C3, C5							
Final examination		CO 1	C2, C3							
	60%	CO 2	C5							
		CO 3	C2, C3							
Total Marks	100%									
REFERENCE BO	OKS									
		inite Element Analysis by city, 5th Edition, by A C								

Advanced Strength and Applied Elasticity, 5th Edition, by A C Ugural and
 The geometrical Language of Continuum Mechanics by Marcelo Epstein

7.2 Geotechnical Engineering

Spring Semester L-3, T-I

Theoretical (Core)

COURSE INFORMATION

Course Code	: CE 341
Course Title	: Principles of Soil Mechanics

Lecture Contact Hours Credit Hours : 4.00 : 4.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will enable the students to learn soil mechanics aspect of geotechnical engineering with an aim to acquire the basic knowledge of the geotechnical parameters needed for the purpose of designing foundations/ substructures of any civil engineering infrastructure, earth retaining and earth structures or any other structures resting on the surface and within the ground.

OBJECTIVE

On studying this course student will be able to:

- **Understand** the geological processes for the formation of various types of soils, their physical and index properties, and their use in engineering and other classifications of soils that to be used in estimating the preliminary parameters in geotechnical designs.
- **Understand** the principles of total, effective and neutral stresses in watery environment and distribution of stresses within soil mass due to external loading in order to predict the mechanical behavior (load deformation interaction) of foundation soils.
- **Understand and determine** the mechanical properties including shear strength and compressibility characteristics of soil that to be used in any geotechnical designs of structures.
- **Understand** the concepts of permeability of soil, its determination methods, the flowing phenomenon of water through soil, induced uplift pressure and seepage within the soil mass.
- **Understand and compute** the lateral stresses induced due to deformation of soil and acting on the retaining structures and foundations.

COURSE CONTENT

Geotechnical Engineering and Soil Mechanics - Background; Formation, Type and Identification of Soils; Soil Structure and Fabric; Index Properties of Soil; Classifications of Soil; Weight-Volume Relationships; Soil Compaction; Total and Effective Stresses within Soil Mass due to Overburden; Stresses within the Soil Mass due to External Loading; Permeability and Seepage; Stress-Strain-Strength Characteristics of Soil; Compressibility and Settlement of Soil; Lateral Earth Pressure.

No.	COURSE OUTCOMES		-	Р	ROG	RAM	ME O	UTC	OMES	5 (PO	s)		-
	(COs)	P01	P02	P03	P04	SOY	90d	P07	80d	60d	P010	P011	P012

2 To acquire the knowledge and to evaluate the engineering properties of soil including shear strength, compressibility, various stresses induced within the soil mass, and permeability of soil. √ 3 To understand and assess the compaction aspect of shallow depth ground improvement, and lateral earth pressure within the soil mass due to √	1	To acquaint with the attributes of geotechnical engineering especially soil mechanics and to acquire knowledge of soil the formation, physical and index properties of soil including weight volume relations, grain size analysis and consistency limits for the purpose of engineering classification of soils.	\checkmark						
the compaction aspect of shallow depth ground improvement, and lateral earth pressure within the Image: Compaction aspect of the shallow depth ground improvement, and lateral depth ground depth	2	and to evaluate the engineering properties of soil including shear strength, compressibility, various stresses induced within the soil mass, and		V					
overburden and surcharge loading.	3	the compaction aspect of shallow depth ground improvement, and lateral earth pressure within the soil mass due to overburden and surcharge		V					

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

	COURSE (OUTCO	MES AN	D GENE	CRIC SK	ILLS	
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	To acquaint with the attributes of geotechnical engineering especially soil mechanics and to acquire knowledge of soil the formation, physical and index properties of soil	1	C1	1	-	1	Class Test, Mid-term Exam, Pop Quiz, Final Exam.

	including weight volume relations, grain size analysis and consistency limits for the purpose of engineering classification of soils.						
CO2	To acquire the knowledge and to determine the engineering properties of soil including shear strength, compressibility, various stresses induced within the soil mass, and permeability of soil.	2	C3	1	-	3	Class Test, Mid-term Exam, Pop Quiz, Final Exam.
CO3	To understand and appraise the compaction phenomenon, and lateral earth pressure within the soil mass due to overburden and surcharge loading.	2	C1	1	-	3	Class Test, Mid-term Exam, Pop Quiz, Final Exam.

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,

K5: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (Hours)
Face to Face Learning	56
Lecture (4 hours/week × 14 weeks)	
Guided Learning	
Tutorial/ Assignments (4 hours/week \times 5 weeks)	20
Independent Learning	
Individual Learning (1-hour Lecture \approx 1-hour Learning)	48
Preparation for Tests and Examination	30
Assessment	

	uous Assess	ment		3
Final E	xamination			3
Total				160
TEAC	HING MET	THODOLOGY		
Lecture	e and Discus	sion, Co-operative and Collaborative	Method, Proble	em Based Learning (PBL)
TEAC	HING/ LEO	CTURE SCHEDULE		
Week	Lectures	Topics		Assessments
	1	Background of Geotechnical Enginee Mechanics [*]	ering and Soil	
1	2	Background of Geotechnical Enginee Mechanics [*]		
	3	Weight-Volume Relationships**		
	4	Total and Effective Stresses within S to Overburden ^{***}		
	5	of Soils [*]	CT/ Assignment-1	
	6	f soils [*]		
2	7	Weight-Volume Relationships**		
	8	oil Mass due		
	9	Soil Structure and Fabric [*]		
	10	Index Properties of Soil*		
3	11	Weight-Volume Relationships ^{**}		
	12	Soil Mass due		
	13	Index properties of soil [*]		
	14	Index properties of soil [*]		
4	15	Weight-Volume Relationships**		
	16	Total and Effective Stresses within S to Overburden ^{***}	oil Mass due	
	17	Index properties of soil [*]		CT/Assignment-2
	18	Classifications of Soil [*]		
5	19	Soil Compaction ^{**}		
	20	Stresses within the Soil Mass due to Loading ^{***}		
	21	Classifications of Soil*		
	22	Classifications of Soil [*]		
6	23	Soil Compaction ^{**}		
	24	Stresses within the Soil Mass due to Loading ^{***}	External	
	25	Classifications of Soil*		
7	26	Stress-Strain-Strength Characteristic	s of Soil*	
	27	Soil Compaction**		

9	35	Permeability and Se	epage**	
	33	Loading ^{***} Stress-Strain-Strength	Characteristics of Soil	k
9	34	-	Characteristics of Soil	
	36	Compressibility and S		*
	37		Characteristics of Soil	
10	38		Characteristics of Soil	·
10	39	Permeability and Se	epage ^{**}	
	40	Compressibility and S	ettlement of Soil***	
	41	Lateral Earth Pressure	*	
11	42	Lateral Earth Pressure		
11	43	Permeability and Se	epage ^{**}	
	44	Compressibility and S	ettlement of Soil***	
	45	Lateral Earth Pressure		
12	46	Lateral Earth Pressure	*	
12	47	Permeability and Se	epage**	
	48	Compressibility and S	ettlement of Soil***	
	49	Lateral Earth Pressure		CT/Assignment-5
10	50	Lateral Earth Pressure	*	
13	51	Permeability and Se		
	52	Compressibility and S	ettlement of Soil***	
	53	Lateral Earth Pressure		
14	54	Lateral Earth Pressure	*	
14	55	Permeability and Se	epage ^{**}	
	56	Compressibility and S		
Course	Instructor 1, **	Course Instructor 2, *** Cou	rse Instructor 3	
ASSES	SMENT ST	FRATEGY		
Compo	onents	Grading	СО	Blooms Taxonomy
ASSES Compo Continu Assessi (Class	SMENT ST onents	FRATEGY		Blooms Taxonomy
Mid Te	rm/ Class			
Particip	Jation)			

		CO2 CO3	C3 C1
Total Marks	100%		
REFERENCE BO	OKS/ MATERIALS		
2. Principles of Geo	neering – R. B. Peck, V otechnical Engineering – gineering Soil Mechan	- B. M. Das and K. Sob	

- 4. An Introduction to Geotechnical Engineering R. D. Holtz, W. D. Kovacs and T. C. Sheahan.
- 5. Geotechnical Engineering Principles and Practices D. P. Coduto.
- 6. Course Handouts and Class Lectures.

Spring Semester L-3, T-I

Sessional (Core)

COURSE INI	FORMATION		
Course Code Course Title	: CE 342 : Geotechnical Engineering Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will enable the students to perform various hands-on laboratory and field tests, analyze the data and prepare reports on various physical, index and engineering properties of soil.

OBJECTIVE

- To perform tests and to prepare reports on various physical and index properties tests like field identification, specific gravity of soil solids, grain size analysis, limits tests, and maximum and minimum dry densities.
- To perform tests and to prepare reports on various tests on engineering properties of soil like unconfined compressive strength, direct shear strength, consolidation behaviour and permeability of soil, and also laboratory and field tests on ground modification like field density and laboratory compaction tests.

COURSE CONTENT

Field Identification of Soil; Specific Gravity of Soil Particles; Grain Size Analyses of Soil by Sieve and Hydrometer; Atterberg's Limits; Laboratory Soil Compaction; Maximum and Minimum Densities of Sandy Soils; Field Density of Soil; Permeability of Soil by Constant Head and Falling Head; Unconfined Compression Test of Cohesive Soil; Direct Shear Test of Soil; Consolidation Test.

No	COURSE OUTCOMES (COs)		1	P	ROGI	RAMI	ME O	UTC	OME	S (PC)s)	1	
•		P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012
1	Ability to determine various physical, index and engineering properties of soil using standard test procedures.	V											
2	Ability to analyse the data obtained from various field and		V										

laboratory tests related to engineering soils.						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

0001	ASE OUTCOMES AND			10			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	A	K	Assessment Methods
CO1	Ability to determine various physical, index and engineering properties of soil using standard test procedures.	1	C3	1		3	Class Assessment, Lab Report, Mid Quiz, Final Quiz, Viva
CO2	Ability to analyse the data obtained from various field and laboratory tests related to engineering soils.	2	C4	3		4	Class Assessment, Lab Report, Mid Quiz, Final Quiz, Viva

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACI Teachi	ng and Lear	ning Activities	Engagement (Hours)				
	Face Learn						
		$ek \times 14$ weeks)	33				
Guided	Learning						
Tutoria	l/ Assignmen	ts (3 hours/week \times 5 weeks)	10				
Indepe	ndent Learn	ing					
Individ learning	ual learning (g)	8					
Prepara	tion for tests	and examination	4				
Assess	nent						
Continu	ious Assessm	lent	2				
Final ex	amination		3				
Total			60				
TEAC	HING METI	HODOLOGY					
Lecture	and Discussi	ion, Co-operative and Collaborative	e Method, Problem Based Learning.				
TEAC	HING SCHE	CDULE					
Week	Lectures	Topics	Assessments				
1							
	1	Field identification tests	-				
2	1	Field identification tests Specific gravity test of soil particles	Lab Report, Class Assessment, Mid Ouiz				
2 3			Assessment, Mid Quiz				
	2	Specific gravity test of soil particles	Assessment, Mid Quiz				
3	2 3	Specific gravity test of soil particles Grain size analysis by sieve and hyd	Assessment, Mid Quiz				
3	2 3 4	Specific gravity test of soil particles Grain size analysis by sieve and hyd Atterberg limits test	Assessment, Mid Quiz				
3 4 5	2 3 4 5	Specific gravity test of soil particles Grain size analysis by sieve and hyd Atterberg limits test Compaction test	Assessment, Mid Quiz				
3 4 5 6	2 3 4 5 6	Specific gravity test of soil particles Grain size analysis by sieve and hyd Atterberg limits test Compaction test Maximum and minimum densities te	Assessment, Mid Quiz				

Unconfined compression test

Direct shear tests

Consolidation tests

Consolidation tests

9

10

11

12

9

10

11

12

Assessment, Final

Quiz

13	13	Final Quiz		
14	14	Viva		
ASSES	SMENT ST	RATEGY		
Compo	nents	Grading	СО	Blooms Taxonomy
Continu	ious Assessm	ent 40%	CO1, CO2	C3, C4
0		<00/	CO 1	C3
Quiz		60%	CO 2	C4
Total M	Iarks	100%		
REFE	RENCE BOO	OKS		
1. Soil	Testing for I	Engineers – T. W.	Lambe	
2. Eng	ineering Prop	perties of Soils and	l Their Measurement – J. E	. Bowles.
3. Soil	Mechanics I	Laboratory Manual	l – B. M. Das.	
4. Soil	Mechanics I	.ab Manual – M. H	E. Kalinski.	

5. Geotechnical Engineering Laboratory Handout: MIST

Fall Semester L-3, T-II

Theoretical (Core)

COURSE IN	FORMATION		
Course Code	: CE 343	Lecture Contact Hours	: 3.00
Course Title	: Foundation Engineering	Credit Hours	: 3.00
PRE-REQUI	SITE		
CE 341			

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will enable the students to acquire the skill of interpreting subsoil condition of a project site, determining bearing capacity and estimating settlement of shallow and deep foundations, and also analysing the stability of slopes of earthen structures.

OBJECTIVE

- To plan and design the subsoil investigation program of any project site for its characterization including soil profiling in order to design proper foundations of any civil engineering structures..
- To evaluate the bearing capacity and settlement for the purpose of designing shallow foundations including footings and raft for a structure on various subsoil and loading conditions.
- To evaluate compressive, uplift and lateral bearing capacity and settlement of single and group pile foundations for a structure in various subsoil and loading conditions.
- To analyze the performance of existing foundations.
- To analyze and check the stability of any soil slopes in various soil and groundwater conditions.

COURSE CONTENT

Subsoil Investigations; Types of Shallow and Deep Foundations; Bearing Capacity Equations and Factors for Shallow Foundations; Settlement of Shallow Foundations; Compression, Uplift and Lateral Load Carrying Capacity of Pile Foundations; Settlement of Pile Foundations; Slope Stability.

No	COURSE OUTCOMES (COs)			P	ROGI	RAMI	ME O	OUTC	OME	S (PO	s)		
•		P01	P02	P03	P04	PO5	P06	P07	PO8	PO9	P010	P011	P012
1	Ability to characterize the subsoil condition of a site in order to decide on the type of foundation of any structures suitable for the particular site.		V										

3	Ability to analyse and evaluate the bearing capacity and settlement for the purpose of designing shallow foundations including raft, and single and group pile foundations for a structure in various subsoil and loading conditions. Ability to analyse and check the stability of soil slopes in various slope, subsoil and groundwater conditions.		√ √									
COU	RSE OUTCOMES AND	GEN	ERI	C SK	ILL	S						
No.	Course Outcomes	Corresponding	POS	Bloom's	тахоношу	CP (WP)	CA (EA)		NV (WN)		Assessment Methods	
CO1	Ability to characterize the subsoil condition of a site in order to decide on the type of foundation of any structures suitable for the particular site.	2		C1		3		2	4	Pop Class	Quiz, 5 Test	
CO2	Ability to analyse and evaluate the bearing capacity and settlement for the purpose of designing shallow foundations including raft, and single and group pile foundations for a structure in various subsoil and loading conditions.	2		C3		3			4	Mid-	s Test/ Term/ Exam	
CO3	Ability to analyse and check the stability of soil slopes in various slope, subsoil and groundwater conditions.	2		C3		3		2	4	Final	Exam	1
Engir	Washington Accord Comp neering Activities/ CA= Co le/ KP= Knowledge Profile	mple			-	-	-			-	-	=

TEA	CHING LEA	ARNING STRATEGY	Γ	
Teac	hing and Lea	arning Activities	Engagemen	t (Hours)
Face	to Face Lear	rning		
Lectu	re (3 hours/w	$veek \times 14$ weeks)	42	
Guid	ed Learning			
Tutor	ial/ Assignm	ents (3 hours/week \times 5 weeks)	15	
Indep	pendent Lea	rning		
Indivi learni	-	g (1-hour lecture \approx 1-hour	36	
Prepa	ration for tes	ts and examination	22	
Asses	sment			
Conti	nuous Assess	sment	2	
Final	Examination		3	
Total	l		120)
TEA	CHING ME	THODOLOGY		
Lectu	re and Discu	ssion, Co-operative and Collabora	tive Method, Problem I	Based Learning.
TEA	CHING SCH	IEDULE		
Week	Lectures	Topics		Assessments
	1	Scope and aspects of foundation Information required from a sub		CT/ Assignment-1
1	2	Introduction to stability of slope slopes of cohesionless, cohesive	, ,	
	3	Planning of subsoil investigation exploration; Number and location boring.*		
	4	Types of boring: Auger boring; boring; Wash boring; Percussion drilling.*	0	
2	5	Planner method of stability anal Culmann's analysis.**	ysis of finite slopes;	
	6	Types of boring: Auger boring; boring; Wash boring; Percussion drilling.*	-	
	7	Determination of ground water a Soil sampling and soil samplers		
3				1

	9	Penetration tests; Standard penetration test and SPT N-values; Corrections for SPT N-values; SPT and soil strength parameters. [*]	
4	10	Penetration tests; Standard penetration test and SPT N-values; Corrections for SPT N-values; SPT and soil strength parameters.*	CT/ Assignment-2
	11	Different modes of circular finite slope failure; Mass method of stability of slopes.**	
	12	Types of soil samplers; Types of soil samples and their usages; Sample disturbance and its measurement; Rock quality designation.*	
	13	Dynamic cone penetration test; Dutch cone penetration (CPT); Cone and sleeve resistance.*	
5	14	Slices methods of stability of slopes; Ordinary method of slices. ^{**}	
	15	CPT friction ratio and its relationship with soil types; Use of piezocone in determining porewater pressure and water table; CPT-SPT relations.*	
6	16	Geophysical methods of subsoil investigation; Field vane shear test; Subsoil investigation report.*	
	17	Simplified Bishop method of stability analysis.**	
	18	Types of shallow foundation; Failure mechanism of foundation soil under footing. [*]	
	19	General bearing capacity equations for shallow foundation. [*]	
7	20	Taylor's chart in analyzing stability of slopes. Various methods of determining centre or locus of slip surface.**	
	21	Bearing capacity factors and angle of internal friction of soil; Bearing capacity factors proposed by various authorities.*	
	22	Types of deep foundation; Classification and use of pile foundation. ^{**}	Mid Term/ Assignment-3
8	23	Bearing capacity of strip footing on cohesionless soil; Effect of footing shapes on bearing capacity.*	
	24	Driven and bored piles; Friction and bearing piles; Analysis of skin friction and end bearing for driven piles in sand.**	
9	25	Computation of skin friction of driven piles in clay; α -method. ^{**}	

	26	Bearing capacity of strip footing on cohesionless soil; Effect of footing shapes on bearing capacity; Design charts for the design of footing on cohesionless soil.*	
	27	Critical depth concept for piles in cohesionless soil; Estimation of skin friction and end bearing using critical depth concept. ^{**}	
10	28	Computation of skin friction of driven piles in clay; β -method; λ -method. ^{**}	
	29	Bearing capacity of footing on clay; Skempton equation.*	-
	30	End bearing for piles in clay soil; Bearing capacity of group piles in sand and clay; Efficiency of pile group.**	
	31	Effect of load eccentricity on group piles; Estimation of bearing capacity from SPT-value for piles in sand, clay and silty soil.**	
11	32	Bearing capacity of footing on clay; Skempton's equation.*	-
	33	Negative skin friction and remedial measures. Bearing capacity of bored piles.**	
	34	Pile driving formula; Uplift capacity of individual pile and group. ^{**}	CT/ Assignment-4
12	35	Load eccentricity on bearing capacity; Meyerhof concept of equivalent footing width.*	
	36	Laterally loaded piles.**	
	37	Laterally loaded piles.**	
13	38	Bearing capacity of raft foundation; Factor of safety in bearing capacity. Construction problems of footing and raft foundation.*	
	39	Pile load test and interpretation of load test data.**	
	40	Construction problems of driven piles and bored piles. Concreting of bored piles; Reverse circulation method.**	
14	41	Computation of settlement of footing; Elastic settlement; immediate settlement and consolidation settlement.*	
	42	Construction problems of driven piles and bored piles; Concreting of bored piles; Reverse circulation method.**	

ASSESSMENT STRATEGY							
Components	Grading	СО	Blooms Taxonomy				
Continuous Assessment	40%	CO1, CO2, CO3	C1, C3				
(Class assignments/ CT/ Mid Term/ Active Class Participation)							
	60%	CO 1	C1				
Final Exam		CO 2	C3				
		CO 3	C3				
Total Marks	100%						
REFERENCE BOOKS							

1. Foundation Engineering – R. B. Peck, W. E. Hanson and T. H. Thornburn.

2. Foundation Analysis and Design – J. E. Bowles.

3. Shallow Foundations Discussions and Problem Solving – T. M. Baban.

4. Pile Foundations in Engineering Practice – S. Prakash and H. D. Sharma.

5. Principles of Foundation Engineering – B. M. Das and N. Sivakugan.

6. Foundation Design Principles and Practices – D. P. Coduto, W. A. Kitch and M. R. Yeoung

7. Handouts and Lecture Notes on CE 441, MIST.

Fall Semester L-4, T- II

Theoretical (Elective)

COURSE INFORMATION								
Course Code	: CE 443	Lecture Contact Hours	: 2.00					
Course Title	: Earth Retaining Structures	Credit Hours	: 2.00					
DDE DEOLUG	DDE DEALUSITE							

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

By studying this course, students will be familiarized with various types of earth retaining structures and their usages. They will also be able to analyze and design different types of earth retaining structures, braced excavation, dewatering system for deep excavation, caisson foundation and cofferdams.

OBJECTIVE

- To be able to familiarize with the foundations subjected to lateral loads and various types of earth retaining structures, and their usages.
- To be able to analyse and design rigid and flexible earth retaining structures, braced excavation, dewatering system, slurry wall, cofferdam and caissons.
- To be able to identify construction problems in excavations and earth retaining structures.

COURSE CONTENT

Foundation of Structures Subjected to Lateral Loads; Earth Retaining Structures; Gravity and Cantilever Retaining Walls; Deep Excavations: Sheet Pile Walls, RC Pile Walls, Slurry Walls and Ground Freezing; Braced Excavation, Construction Dewatering; Caissons and Cofferdams, Construction Problems in Excavation and Earth Retaining Structures.

No	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
•	(005)	P01	P02	P03	P04	PO5	P06	P07	PO8	909	P010	P011	P012
1	To be able to familiarize with the foundations subjected to lateral loads and various types of earth retaining structures, and their usages.	V											

2	To be able to analyse and design rigid and flexible earth retaining structures, bracing systems, dewatering system, slurry wall, cofferdam and caissons.	V							
3	To be able to identify construction problems in excavations and earth retaining structures	N							
PO1 solut Envi Com	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 								
No.	URSE OUTCOMES AND Course Outcomes		SKILLS						
		Corresponding POs	Bloom's Taxonomy	P	V	Х	Assessment Methods		
CO1	To be able to familiarize with the foundations subjected to lateral loads and various types of earth retaining structures, and their usages.	1	C1	1		1	Class Test, Mid-term, Pop quiz, Final Exam		
CO2	To be able to analyse and design rigid and flexible earth retaining structures, bracing systems, dewatering system, slurry wall, cofferdam and caissons.	2	C4	3		3	Class Test, Mid-term, Pop quiz, Final Exam		
CO3	To be able to identify construction problems in excavations and earth retaining structures	2	C1	1		3	Class Test, Mid-term, Pop quiz, Final Exam		

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

<u>Complex Engineering Activities (A)</u>:

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (Hours)				
Face to Face Learning					
Lecture (2 hours/week × 14 weeks)	28				
Guided Learning					
Tutorial/ Assignments (3 hours/week × 5 weeks)	15				
Independent Learning					
Individual Learning (1-hour lecture \approx 1-hour learning)	18				
Preparation for Tests and Examination	14				
Assessment					
Continuous Assessment	2				
Final Examination	3				
Total	80				

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments
1	1	Lateral Earth Pressure and Retaining Structures	CT/ Assignment-1
1	2	Rigid Earth Retaining Structures	
	3	Rigid Earth Retaining Structures	
2	4	Rigid Earth Retaining Structures	
3	5	Cantilever Sheet Pile Walls	CT/ Assignment-2

Total Marks 100%								
			CO3	C1				
		60%	60% CO2 C					
Final E	xam		CO1 CO1					
CT/ Mi Particip			CO1, CO2, CO3	C1, C4, C1				
Continu Assessr	nent							
Compo		Grading	СО	Bloom's Taxonomy				
	SMENT ST							
		Retaining Structures.						
14	28	Construction Problems	in Excavation and Earth					
	27	Construction Problems Retaining Structures.	in Excavation and Earth					
15	26	Cofferdams						
13	25	Cofferdams						
12	24	Caissons Foundations						
12	23	Caissons Foundations						
11	22	Caissons Foundations	Caissons Foundations					
11	21	Deep Excavation and I	Dewatering					
10	20	Deep Excavation and I	Dewatering					
10	19	Deep Excavation and I	Dewatering					
9	18	Ground Freezing						
0	17	Ground Freezing						
8	16	Slurry Walls						
0	15	Slurry Walls						
7	14	Pile Retaining Walls						
_	13	Pile Retaining Walls						
6	12	Braced Excavation	Braced Excavation					
	11	Braced Excavation		Assignment-3				
5	10	Braced Excavation		Mid Term/				
	9	Anchored Sheet Pile W	/alls					
4	8	Anchored Sheet Pile W						
	7	Cantilever Sheet Pile V						

REFERENCE BOOKS

- 1. Earth Pressure and Earth Retaining Structures C. R.I. Clayton, R. I. Woods, A. J. Bond and J. Milititsky.
- 2. Soil Mechanics and Foundation Engineering N. Rao.
- 3. Principles and Practices of Ground Improvement Jie Han.
- 4. Construction Dewatering and Groundwater Control J. P. Powers, A. B. Corwin, P. C. Schmall and W. E. Kaeck.
- 5. Principles of Foundation Engineering by B. M. Das and N. Sivakugan.
- 6. Advanced Foundation Engineering V. N. S. Murthy.

Fall Semester L-4, T- II

Theoretical (Elective)

COURSE INI	COURSE INFORMATION							
Course Code	: CE 447	Lecture contact Hours	: 2.00					
Course Title	: Soil-water Interaction	Credit Hours	: 2.00					
	· · · · · · · · · · · · · · · · · · ·							

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will help students to understand the soil properties for the design of foundation, especially to learn how to understand permeability and seepage behavior of soil, capillary action, soil suction for proper design. Students will also be introduced with the concept of slope stability subjected to wave current, design geotechnical landfill for slope stability which will be very useful in their professional life.

OBJECTIVE

- To comprehend the concept of ppermeability for homogeneous and stratified soil including one dimensional flow in layered Soil.
- To analyse seepage, capillary, soil suction and slopes subjected to steady seepage.
- To analyze flow through earth dams.
- To design filters and revetments.

COURSE CONTENT

Water in Soil: Occurrence and Effects; Soil Water Interaction Problems; Vertical and Horizontal Permeability for Homogeneous and Stratified Soils; Seepage, Capillary and Soil Suction; One Dimensional Flow in Layered Soil; Flow through Earth Dams; Slopes Subjected to Seepage, Water Current and Wave Action; Filters and Revetments.

No	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
•		P01	P02	P03	P04	P05	PO6	P07	PO8	P09	P010	P011	P012
1	To be able to comprehend the concept of permeability for homogeneous and stratified soil including one Dimensional Flow in Layered Soil	V											

2	To be able to analyse seepage, capillary, soil suction and slopes subjected to steady seepage	\checkmark						
3	To be able to analyse flow through earth dams.	\checkmark						
4	To be able to design filters and revetments.		\checkmark					

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	pù					
		Corresponding POs	Bloom's Taxonomy	Р	V	K	Assessment Methods
CO1	To be able to comprehend the concept of permeability for homogeneous and stratified soil including one Dimensional Flow in Layered Soil	1	C2	1		3	Class Test, Mid-term, Pop quiz, Final Exam
CO2	To be able to analyse seepage, capillary, soil suction and slopes subjected to steady seepage	2	C4	2		4	Class Test, Mid-term, Pop quiz, Final Exam
CO3	To be able to analyse flow through earth dams.	2	C4	2		4	Assignment, Pop quiz
CO4	To be able to design filters and revetments.	3	C5	2		5	Assignment, Pop quiz

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (Hours)			
Face to Face Learning				
Lecture (2 hours/week \times 14 weeks)	28			
Guided Learning				
Tutorial/ Assignments (2 hours/week \times 5 weeks)	10			
Independent Learning				
Individual learning (1-hour lecture \approx 1-hour learning)	24			
Preparation for tests and examination	13			
Assessment				
Continuous Assessment	2			
Final examination	3			
Total	80			

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning.

TEAC	TEACHING SCHEDULE								
Week	Lectures	Topics	Assessments						
1	1	CT/ Assignment-1							
1	2	Water in soil: occurrence and effects							
2	3								
	4	Soil- water Interaction problems							
2	5	Vertical and horizontal permeability for homogeneous and stratified soils							
3	6	Vertical and horizontal permeability for homogeneous and stratified soils							
4	7	Vertical and horizontal permeability for homogeneous and stratified soils	Mid Term/ Assignment-2						

	8	Seepage, capillary and so		
5	9	Seepage, capillary and so		
5	10	Seepage, capillary and so		
6	11	One dimensional flow in	layered soil	
6	12	One dimensional flow in	layered soil	
7	13	One dimensional flow in	layered soil	
	14	Flow through earth dams		
8	15	Flow through earth dams		
0	16	Flow through earth dams		
9	17	Slopes subjected to seepa	ige	
9	18	Slopes subjected to seepa	ige	
10	19	Slopes subjected to seepa	ige	
10	20	Slopes subjected to seepa	ige	
11	21	Water current and wave	CT/ Assignment-3	
11	22	Water Current and Wave	Action	
12	23	Water Current and Wave	Action	
12	24	Water current and wave	action	
10	25	Filters and revetments		
13	26	Filters and revetments		
	27	Filters and revetments		
14	28	Filters and revetments		
ASSES	SMENT STR	ATEGY		
Compo		Grading	СО	Bloom's Taxonomy
ContinuousAssessment(Class assignments/ CT/ Mid Term/ Active Class Participation)		40%	CO1, CO2, CO3, CO4	C2, C4, C5
Final E	Exam		CO 1	C2
1				

CO 2

CO 3

CO4

60%

100%

Total Marks

C4

C4

C5

REFERENCE BOOKS

- 1. Seepage, Drainage, and Flow Nets H. R. Cedergren.
- 2. Ground Water Hydrology D. K. Todd and L.W. Mays.
- 3. Basic Ground Water Hydrology R. C. Heath.
- 4. Soil Water Interactions Mechanisms and Applications S. Iwata, T. Tabuchi and B. P. Warkentin.
- 5. Earth and Earth-Rock Dams: Engineering Problems of Design and Construction –J. L. Sherard.
- 6. Advanced Soil Mechanics B. M. Das.
- 7. Soil Mechanics and Foundations J. V. Parcher and R. E. Means.
- 8. BWDB Design Manual.

Fall Semester L-4, T- II

Theoretical (Elective)

COURSE INFORMATION								
Course Code	: CE 445	Lecture Contact Hours	: 2.00					
Course Title	Course Title : Elementary Soil Dynamics Credit Hours : 2.00							
DDE DEOLU	STUDE							

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Un this course, the students will learn about dynamic properties of soil, seismic response of soil, soil liquefactions and other which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To comprehend the fundamental knowledge on vibration theory for different free and forced vibration system
- To apply the knowledge of site amplification for assimilating the wave propagation effect
- To be able to analyse and design machine foundation systems for different characterizing factors

COURSE CONTENT

Elementary Vibrations; Dynamic Properties of Soil; Seismic Response of Soil; Seismic Site Characterization and Site Amplification; Soil Liquefaction; Earthquake Hazards and Remedial Measures, Dynamic Bearing Capacity Analyses, Machine Foundations.

No	O COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)								-		
			P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1	Ability to comprehend the fundamental knowledge on vibration theory for different free and forced vibration system	\checkmark											
2	Ability to analyse and design machine foundation system for different characterizing factors.		V										

Progr PO1: solution Comm	Ability to investigate the seismic response of soil and estimate the iquefaction potential of a project site. am Outcomes (PO) : Engineering knowledge, P ons, PO4 : Investigation, PO onment and sustainability, nunication, PO11 : Project	05: Modern PO8: Ethics, management	tool usage, , PO9 : Indi and financ	PO6 : The vidual and	he engir nd team	neer and work, P	society, PO7 : O10 :
No.	RSE OUTCOMES AND	Corresponding POs	Bloom's Taxonomy	P	A	K	Assessment Methods
CO1	Ability to comprehend the fundamental knowledge on vibration theory for different free and forced vibration system.	1	C2	1		3	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to analyse and design machine foundation system for different characterizing factors.	2	C4	3		4	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Ability to investigate the seismic response of soil and estimate the liquefaction potential of a project site.	2	C3	2		4	Class Test, Mid-term, Pop quiz, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY						
Teachi	ng and Lear	ning Activities	Engagement (hours)			
Face to Face Learning						
Lecture	(2 hours/wee	$ek \times 14$ weeks)	28			
Guided	Learning					
Tutoria	/ Assignmen	ts (3 hours/week \times 5 weeks)	15			
Indepe	ndent Learn	ing				
Individu learning		1-hour lecture \approx 1-hour	20			
Prepara	tion for tests	and examination	12			
Assessm	nent					
	ious Assessm	nent	2			
	amination		3			
Total			80			
TEACI	HING METI	HODOLOGY				
Lecture	and Discuss	ion, Co-operative and Collaborat	tive Method, Problem Based Learning.			
TEAC	HING SCHE	CDULE				
Week	Lectures	Topics	Assessments			
1	1	Dynamic Properties of Soil	CT/ Assignment-	1		
-	2	Dynamic Properties of Soil				
2	3	Dynamic Properties of Soil				
2	4	Dynamic Properties of Soil				
3	5	Elementary Vibrations				
5	6	Elementary Vibrations;				
4	7	Seismic Response of Soil	CT/ Assignment-	2		
+	8	Seismic Response of Soil				
5	9	Seismic Site Characterization a Amplification	and Site			
5	10	Seismic Site Characterization a Amplification	and Site			
6	11	Dynamic Bearing Capacity An				
6	12	Dynamic Bearing Capacity An	alyses Assignment-3			
7	13	Dynamic Bearing Capacity An	alyses			
7	14	Dynamic Bearing Capacity An	alyses			
8	15	Dynamic Bearing Capacity An	alyses			

	16	Dynamic Bearing Ca		
0	17	Soil Liquefaction		
9	18	Soil Liquefaction		
10	19	Soil Liquefaction		
10	20	Soil Liquefaction		
11	21	Principles of Machin	ne Foundations.	
11	22	Principles of Machin	ne Foundations.	
12	23	Principles of Machin	ne Foundations.	CT/ Assignment-4
12	24	Principles of Machin	ne Foundations.	
12	25	Principles of Machin	ne Foundations.	
13	26	Principles of Machin	ne Foundations.	
	27	Earthquake Hazards	and Remedial Measures	
14	28			
	20	Larinquake Hazards	and Remedial Measures	
ASSES	SMENT STR	•		
ASSES Compo	SMENT STR	•	CO	Blooms Taxonomy
	SMENT STR ments	RATEGY		Blooms Taxonomy
Compo Continu Assessr (Class a CT/ Mid	SMENT STR ments	ATEGY Grading 40%		Blooms Taxonomy C2, C3, C4
Compo Continu Assessr (Class a CT/ Mid	SMENT STR onents nous nent assignments/ d Term/ Activ	ATEGY Grading 40%	СО	
Compo Continu Assessr (Class a CT/ Mid	SMENT STR onents nous nent assignments/ d Term/ Activ articipation)	ATEGY Grading 40%	CO CO1, CO2, CO3	C2, C3, C4
Compo Continu Assessr (Class a CT/ Mid Class Pa	SMENT STR onents nous nent assignments/ d Term/ Activ articipation)	ATEGY Grading 40%	CO CO1, CO2, CO3 CO 1	C2, C3, C4 C2
Compo Continu Assessr (Class a CT/ Mid Class Pa	SMENT STR onents ious nent assignments/ d Term/ Activ articipation)	ATEGY Grading 40%	CO CO1, CO2, CO3 CO 1 CO 2	C2, C3, C4 C2 C2 C4

2. Fundamentals of Soil Dynamics and Earthquake Engineering – B. B. Prasad.

3. Soil Dynamics – S. Prakash.

4. Soil Dynamics with Applications in Vibration and Earthquake Protection – C. Vrettos.

Fall Semester L-4, T- II

Theoretical (Elective)

COURSE INFORMATION						
Course Code Course Title	: CE 449 : Numerical Methods in Geotechnics	Lecture Contact Hours Credit Hours	: 2.00 : 2.00			

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will help students to understand the concept of Tensor Analyses, Stresses, Strains. In this course, students will also be introduced with the different material models which will help the students to solve the problems by finite element method, an essential tool for the designers to design any geotechnical structure nowadays.

OBJECTIVE

- To **understand** Tensor Analyses, stresses, and strains
- To **identify** Failure and Palstic Flow, Dilatancy, Yielding and Hardening, preconsolidation of soil.
- To **understand** material models and **solve** geotechnical problems by finite element method

COURSE CONTENT

Introduction to Tensor Analyses: Stresses, Strains; Equations of Continuum Mechanics Isotropic Elasticity, Anisotropy, Stress Dependency, Nonlinearity, Failure and Plastic Flow, Dilatancy, Yielding and Hardening, Pre-consolidation, Material Models, Critical State, Rate Dependency, Finite Element and Finite Difference in Geotechnical Engineering.

No	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
	(COS)									_	0	_	5
		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	60d	PO10	P011	P012
1	Ability to understand												
	tensor analyses, stresses,												
	and strains												
2	Ability to identify failure												
	and plastic flow,												
	dilatancy, yielding and												
	hardening,												
	preconsolidation of soil												
3	Ability to understand					\checkmark							
	material models and												
	solve geotechnical												

	problems by finite element method						
PO1 : solutio Enviro Comn	tam Outcomes (PO): Engineering knowledge, P ons, PO4: Investigation, Po onment and sustainability, nunication, PO11: Project P RSE OUTCOMES AND	05: Modern PO8: Ethics management	tool usage , PO9 : Ind and finan	, PO6 : T ividual a	he engi nd tean	ineer and nwork, P	l society, PO7 : O10 :
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy		A	K	Assessment Methods
CO1	Ability to understand tensor analyses, stresses, and strains	1	C1	1		1	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to identify failure and plastic flow, dilatancy, yielding and hardening, preconsolidation of soil	1	C1	1		3	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Ability to understand material models and solve geotechnical problems by finite element method	5	C2	3		4	Assignment, Pop quiz

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	

Lecture	(2 hours/wee	$ek \times 14$ weeks)		28	
Guided	Learning				
Tutoria	l/ Assignmen	ts (2 hours/week \times 5 weeks)		10	
Indepe	ndent Learn	ing			
Individu learning	-	1-hour lecture \approx 1-hour	28		
Prepara	tion for tests	and examination		14	
Assessm	nent				
Continu	ious Assessm	nent		2	
Final ex	amination			3	
Total			1	20	
TEAC	HING MET	HODOLOGY			
Lecture (PBL)	and Discuss	ion, Co-operative and Collaborat	ive Method, Problem	Based Learning	
TEACI	HING SCHE	CDULE			
Week	Lectures	Topics		Assessments	
1	1	Introduction to Tensor Analyse	es, Stresses, Strains	CT/ Assignment-1	
	2	Introduction to Tensor Analyse	es, Stresses, Strains		
2	3	Introduction to Tensor Analyse	es, Stresses, Strains	_	
	4	Equation of Continuum Mecha	nics	_	
3	5	Equation of Continuum Mecha	nics		
	6	Isotropic Elasticity, Anisotropy	7	Mid Term/	
4	7	Isotropic Elasticity, Anisotropy	7	Assignment-2	
	8	Isotropic Elasticity, Anisotropy	7		
5	9	Stress Dependency, Nonlineari	ty		
	10	Stress Dependency, Nonlineari	ty		
6	11	Stress Dependency, Nonlineari	ty		
	12	Failure and Plastic Flow, Dilata Hardening			
7	13	Failure and Plastic Flow, Dilata Hardening			
	14	Failure and Plastic Flow, Dilata Hardening			
8	15	Failure and Plastic Flow, Dilate			
		Hardening			

	1 1					
9	17	Material Models				
	18	Material Models				
10	19	Material Models				
	20	Critical State				
11	21	Critical State				
	22	Rate Dependency		CT/ Assignment-3		
12	23	Rate Dependency				
	24	Finite Elements, Finite	Difference			
13	25	Finite Elements, Finite	Difference			
	26	Finite Elements, Finite	Difference			
14	27	Finite Elements, Finite	Difference			
	28	Finite Elements, Finite	Difference			
ASSES	SMENT STR	ATEGY				
Compo	onents	Grading	СО	Blooms Taxonomy		
CT/ Mi		e 40%	CO1, CO2,CO3	C1, C2		
Final E	Exam		CO 1	C1		
		60%	CO 2	C1		
			CO 3	C2		
Total M	Total Marks 100%					
	RENCE BOO		- A Puzrin			
		delling in Geomechanics				

2. Numerical Methods in Geotechnical Engineering - Chandrakant S. Desai and J. T. Christian.

3. Applied Soil Mechanics with Abaqus Applications - S Halwany

4. Plasticity and Geotechnics - Hai Sui Yu

5. Soil Constitutive Models by Evaluation, Selection and Calibration - J A Yammuro and V N Kaliakin

Fall Semester L-4, T-II

Sessional (Elective)

COURSE INFORMATION									
Course Code	: CE 442	Lecture Contact Hours	: 3.00						
Course Title	: Foundation Design Sessional	Credit Hours	: 1.5						
PRE-REQUISITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will help students to interpret Subsoil Investigation Report; Geotechnical and Structural Designs of Footing, Raft and Piles; Design of Braced Excavations; Plate and Pile Load Tests, and Testing of Geotextiles for Index and Strength Properties.

OBJECTIVE

- To **interpret** the subsoil investigation report in order to decide on the types any foundations.
- To **evaluate** the bearing capacity and settlement for the purpose of designing footing, raft, and pile foundations for a structure on various subsoil and loading conditions.
- To **analyse** and prepare reports on the performance of existing foundations like footing, raft, and pile foundation in various subsoil conditions
- To be able to **perform** index and strength tests on geotextiles

COURSE CONTENT

Interpretation of Subsoil Investigation Report; Geotechnical and Structural Designs of Footing, Raft and Piles; Design of Braced Excavations; Plate and Pile Load Tests, Index and Strength properties tests of geotextiles.

No	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
•	(COs)	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012
1	Ability to explore types of foundation based on subsoil investigation report.												
2	Ability to evaluate the bearing capacity and settlement for the purpose of designing footing, raft, and pile foundations for a structure on various		V										

	subsoil and loading conditions.									
3	Ability to analyze the performance of existing foundations in various subsoil conditions.	\checkmark								
4	Ability to perform index and strength properties testing of geotextiles.	\checkmark								
 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 										
No.	Course Outcomes	GENEK								
110.		Corresponding POs	Bloom's Taxonomy	4	P	K	Assessment Methods			
CO1	Ability to explore types of foundation based on subsoil investigation report.	1	C1	1		1	Assignment, Quiz			
CO2	Ability to evaluate the bearing capacity and settlement for the purpose of designing footing, raft, and pile foundations for a structure on various subsoil and loading conditions.	2	C5	3		3	Assignment, Quiz			
CO3	Ability to analyze the performance of existing foundations in various subsoil conditions	2	C4	3		4	Assignment, Quiz			
CO4	Ability to perform index and strength	1	C1	1		1	Assignment, Quiz			

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (Hours)						
Face to Face Learning							
Lecture (3 hours/week \times 14 weeks)	42						
Guided Learning							
Assignments (3 hours/week \times 5 weeks)	7						
Independent Learning							
Individual learning (1-hour lecture \approx 1-hour learning)	7						
Assessment							
Continuous Assessment	3						
Quiz	1						
Total	60						
TEACHING METHODOLOGY							

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning.

TEACI	TEACHING SCHEDULE										
Week	Lectures	Topics	Assessments								
1	1	Interpretation of subsoil investigation report and estimation of bearing capacity of shallow foundations by hand calculation and spreadsheet.	Assignments and Quiz-1								
2	2	Interpretation of subsoil investigation report and estimation of bearing capacity of shallow foundations by hand calculation and spreadsheet									
3	3	Structural design of isolated spread footing.									
4	4	Structural design of a combined footing.									

5	5	Bearing capacity and settlement calculation of	
		raft foundation and its structural design.	
6	6	Bearing capacity and settlement calculation of raft foundation and its structural design.	
7	7	Manual calculations of bearing capacity for single and group piles based on actual subsoil investigation report,.	
8	8	Manual calculations of bearing capacity for single and group piles based on actual subsoil investigation report,.	
9	9	Plate load test and data analysis.	Assignments and
10	10	Pile load test and data analysis.	Quiz-2
11	11	Testing of geotextiles: index properties.	
12	12	Testing of geotextiles: strength and CBR	
13	13	Introduction to geotechnical software.	
14	14	Final Quiz and Viva.	

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Continuous Assessment (Class assignments/ Active Class Participation)	40%	CO1, CO2, CO3, CO4	C1, C5, C4, C1
Quiz		CO1	C1
	60%	CO2	C5
	0070	CO3	C4
		CO4	C1
Total Marks	100%		

REFERENCE BOOKS

- 1. Foundation Engineering R. B. Peck, W. E. Hanson and T. H. Thornburn.
- 2. Foundation Analysis and Design Joseph E. Bowles.
- 3. Principles of Foundation Engineering B. M. Das and N. Sivakugan.
- 4. Geotechnical Engineering Foundation Design J. N. Cernica.
- 5. Foundation Design Principles and Practices D. P. Coduto, W. A. Kitch and M. R. Yeoung.
- 6. Soils in Construction W. L. Schroeder, S. E. Dickenson and D. C. Warrington.

7.3 Transportation Engineering

Fall Semester L-3, T-II

Theoretical (Core)

COURSE INI	COURSE INFORMATION									
Course Code	: CE 351	Contact hours	: 3.00							
Course Title	: Fundamentals of Transportation	Credit hours	: 3.00							
	Engineering									
PRE-REOUIS	PRE-REOUISITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It's an introductory course of transportation engineering. Students will be oriented with different types of transportation systems, modes, components of geometric design and traffic engineering. After this course students are expected to determine different geometric features of the highway, conduct volume & speed study, install traffic control device and identify components of transportation system.

OBJECTIVE

- To acquire knowledge on geometric design of highways
- To comprehend highway capacity and level of service
- To orient with the transportation system in Bangladesh
- To orient with road traffic systems including fundamentals of traffic engineering
- To understand basics of transport planning
- To get acquainted with Intelligent Transportation System (ITS) and Traffic Impact Assessment (TIA)

COURSE CONTENT

Transportation engineering, transportation functions; transportation systems, functional components, factors in transportation development, transportation modes, public transportation, emerging modes; transport planning: concepts, scope and hierarchy, process, goals and objectives, inventories, socio-economic activities, land use-transport interaction, travel demand forecasting; transportation in Bangladesh: transportation modes and networks, constraints and challenges, transport demand and modal share, road classification and design standards.

Geometric design of highways: design controls and criteria, cross sectional elements, alignment, sight distance, intersection and interchange layouts and design, planning and design of bicycle and pedestrian facilities; Terminal, highway capacity and level of service: Introduction to road safety issues.

Traffic engineering: fundamentals of traffic engineering, vehicle and traffic characteristics, traffic control devices and systems, traffic studies, planning and design of parking facilities, roadway lighting; Traffic Impact Assessment (TIA), Introduction to Intelligent Transportation System (ITS); Fundamentals of transport economics.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)										0	1	2
		PO1	P02	PO3	P04	PO5	P06	PO7	P08	PO9	P010	P011	PO12
1	Comprehend different transportation systems, functions, different modes, ITS, transportation scenario in Bangladesh	\checkmark											
2	Identify different geometric features of highways and evaluate safety issues considering geometric challenges												
3	Design traffic control devices, parking and street lighting recognizing the rudiments of traffic engineering			\checkmark									
PO1: soluti Envir Comr	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 												
COU	RSE OUTCOMES AND	GEN	ERIC	SK	ILLS			[-				
No.	Course Outcomes	Corresponding	POS		Bloom's Taxonomy		Ρ	A		K		Assessment Methods	
CO1	Comprehend different transportation systems, functions, different modes, ITS, transportation scenario in Bangladesh	1		С	22				3,	4	Assi	Quiz, gnme l Exar	
CO2	Identify different geometric features of highways and evaluate safety issues considering geometric challenges	2		С	22				4,	5	Mid	s Test Term I Exar	,

CO3	Design traffic control devices, parking and street lighting recognizing the rudiments of traffic engineering	3	C3	1, 2, 3		5,6	Class Test, Mid-Term, Final Exam
-----	--	---	----	---------	--	-----	--

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	42
Lecture (3 hours/week x 14 weeks)	42
Guided Learning	15
Tutorial/ Assignments (3 hours/week x 5 weeks)	15
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour	36
learning)	
Preparation for tests and examination	22
Assessment	
Continuous Assessment	2
Final examination	3
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE							
Week	Lectures	Topics	Assessments				
	1	Introduction to Course and Traffic Engineering	CT/Mid/Assignment/				
1	2	Vehicle and Traffic Characteristics	Term Final				
	3	Transportation Function					
	4	Vehicle and Traffic Characteristics, Braking Distance					
2	5	Driver Characteristics					
	6	Transportation System					
	7	Elements of Design: Sight Distance					
3	8	SSD on Horizontal and Vertical curve					
	9	Functional Components					
	10	Superelevation	CT/Mid/Assignment/				
4	11	Cross Sectional Element	Term Final				
	12	Factors in Transportation development					
	13	Intersection					
5	14	Intersection					
	15	Transportation Modes					
	16	Introduction to Traffic Engineering and Traffic Flow parameters	CT/Mid/Assignment/ Term Final				
6	17	Traffic Volume Study					
	18	Emerging Modes					
	19	Traffic Volume Study					
7	20	Speed and Delay Study					
	21	Public Transportation					
	22	Speed and delay Study					
8	23	OD survey					
	24	Land Use Transportation interaction					
	25	Parking Study					
9	26	Traffic Control Device					
	27	Transportation Network					
	28	Traffic Sign and Marking					
10	29	Terminals					
	30	Constraints and challenges					

,				1			
	31	Traffic Signal					
11	32	Traffic Signal					
	33	Transportation demand					
	34	Street Lighting		CT/Mid/Assignment/			
12	35	Traffic Impact Assessme	Traffic Impact Assessment				
	36	Road Classification					
	37	Traffic Accident	_				
13	38	Transportation Planning					
	39	Design standard					
	40	Transportation Planning					
14	41						
	42	Constrains and challenge	es and revision				
ASSES	SMENT STI	RATEGY					
Compo	nents	Grading	СО	Blooms Taxonomy			
Continu Assessn							
(Class assignments/ CT/ Mid Term/ Active Class Participation)		40%	CO1, CO2, CO3	C2, C3			
			CO 1	C2			
Final Exam		60%	CO 2	C2			
			CO 3	C3			
Total Marks		100%					
REFER	RENCE BOO	OKS					

1. Highway Engineering by Paul H. Wright (7th Edition)

2. Transportation Engineering and Transport Planning by L.R. Kadiyali

3. Transportation Planning and Traffic Engineering by O'Flaherty.

4. A Policy on Geometric Design of Highways and Streets, American Association of State Highways and Transportation Officials, Washington, D. C., 2018.

5. Traffic and Highway Engineering, - N. J. Garber and L. A. Hoel, West Publishing Company, MN, 2010.

6. Highway capacity manual, transportation research reports, national research council, Washington D.C.

7. Geometric Design of Roads Handbook, K. M. Wolhuter, CRC Press

Spring Semester L-4, T-I

Theoretical (Core)

COURSE INFORMATION							
Course Code	: CE 451	Contact hours	: 4.00				
Course Title	: Highway Materials, Pavement Design and Railway	Credit hours	: 4.00				
PRE-REQUIS	SITE						

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It's a fundamental course of transportation engineering. Students will be oriented with different types of materials for road construction, pavement types including their design and rudiments of railways. After this course students are expected to identify the required type of pavement, fix its dimensions and select appropriate materials for construction. Besides students will also be able to find out the general requirements of railway.

OBJECTIVE

- To familiarize with the properties, test procedures, specifications and uses of various types of pavement materials including mix design methods.
- To acquire knowledge on characteristics, functions and types of pavements including latest development.
- To acquaint with the different design methods of rigid and flexible pavement.
- To have clear idea about road maintenance and construction equipment.
- To familiarize with low-cost road.
- To learn the basic knowledge on railway engineering, rolling stocks and tracks, signalling, stations and yards

COURSE CONTENT

Pavement materials: bituminous binders, cement, aggregates, embankment material, soil stabilization; mix design methods; low cost roads; road tests, pavement types, components and functions, fundamentals of flexible and rigid pavement, pavement stresses, traffic and loading, design of pavement using contemporary methods, construction methods of pavement, pavement distresses and road maintenance; pavement management, railway engineering: general requirements, rolling stock and tracks, stations and yards, points and crossings, signalling, maintenance operations, pavement construction equipment and uses.

No.	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Demonstrate various types of pavements, components, functions,												

	development, joint and maintenance							
2	Outline rudiments of railway.							
3	Design flexible and rigid pavements using various methods.		\checkmark					
4	Demonstrate various types of pavements, components, functions, development, joint and maintenance							

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	Α	K	Assessment Methods
CO1	Demonstrate various types of pavements, components, functions, development, joint and maintenance	1	C2			3,4	Assignment, Class Test, Mid-Term, Final Exam
CO2	Outline rudiments of railway.	1	C2			3,4	Assignment, Class Test, Mid-Term, Final Exam
CO3	Design flexible and rigid pavements using various methods.	3	C3	1,2,3		5,6	Assignment, Class Test, Mid-Term, Final Exam
CO4	Carry out mix design for pavement layers with appropriate materials	3	C3	1,2,3		5,6	Assignment, Class Test, Mid-Term, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):						
P1 : Depth of knowledge required, P2 : Range of con analysis required, P4 : Familiarity of issues, P5 : Exte stakeholder involvement and conflicting requiremen	ent of applicable codes, P6 : Extent of					
Complex Engineering Activities (A): A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity						
C1: Remember, C2: Understand, C3: Apply, C4: An	nalyze, C5: Evaluate, C6: Create					
TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face to Face Learning	12					
Lecture (3 hours/week x 14 weeks)	42					
Guided Learning	15					
Tutorial/ Assignments (3 hours/week x 5 weeks)	15					
Independent Learning						
Individual learning (1-hour lecture \approx 1-hour	36					
learning)	22					
Preparation for tests and examination						
Assessment						
Continuous Assessment	2					
Final examination	3					
Total	120					
TEACHING METHODOLOGY						
Lecture and Discussion, Problem Based Learning (PBL)						

TEAC	HING SCHI	EDULE			
Week	Lectures	Topics	Assessments		
1	1	Pavement: definition, Types, Characteristics, functions, layers, comparison of different types of pavements, ME design Method.	CT/Mid/Assignment/ Term Final		
	2	Introduction to Railway Engineering			
	3	Bituminous Materials			
2	4 Pavement: definition, Types, Characteristics, functions, layers, comparison of different types of pavements, ME design Method.				
2	5	Introduction to Railway Engineering			
	6	Properties of Bitumen			
	7	Pavement Design Requirement	-		
3	8	Introduction to Railway Engineering			
	9	Tests of Asphaltic Materials	-		
	10	Road Test	CT/Mid/Assignment/		
4	11	Stress and strain in pavement	Term Final		
	12	Rail and Sleeper			
	13	Stress and strain in pavement			
5	14	Ballast, Formation and Embankment			
	15	Tests of Asphaltic Materials]		
	16	Joints in Pavement	CT/Mid/Assignment/		
6	17	Material Characterization	Term Final		
	18	Aggregates			
	19	Road maintenance			
7	20	Geometric Design of Tracks			
	21	Mix Design			
	22	Design of Flexible pavement by AASHTO & Asphalt Institute Method			
8	23	Points and Crossing			
	24	Mix Design			
	25	Design of Rigid pavement by AASHTO Method			
9	26	Rail Traffic Management			
	27	Mix Design			
10	28	RHD Design Method]		

r				
	29 1	colling stock and t	racks	
	30	Soil		
	31	PCA design Metho	od	
11	32	stations and yards		
	33	Embankment Mate	erials	
	34	Low-Cost Road		CT/Mid/Assignment/
12	35	Railway Signalling		Term Final
	36	Cement		
	37	Road Note 31		
13	38	Maintenance opera	ations	
	39	Soil Stabilization		
	40	Construction Equip	pment	
	41			
14	1	on, Types, Characteristics, comparison of different types design Method.		
ASSES	SMENT STR	ATEGY		
Compo	onents	Grading	СО	Blooms Taxonomy
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active				
(Class a CT/ Mi	assignments/ d Term/ Active	40%	CO1, CO2, CO3, CO4	C2, C3
(Class a CT/ Mi	assignments/		CO1, CO2, CO3, CO4	C2, C3
(Class a CT/ Mi	assignments/ d Term/ Active			
(Class a CT/ Mi	assignments/ d Term/ Active articipation)		CO 1	C2
(Class a CT/ Mi Class P	assignments/ d Term/ Active articipation)		CO 1 CO 2	C2 C2
(Class a CT/ Mi Class P	assignments/ d Term/ Active articipation) Exam		CO 1 CO 2 CO 3	C2 C2 C3
(Class a CT/ Mi Class P Final E Total M	assignments/ d Term/ Active articipation) Exam	60%	CO 1 CO 2 CO 3	C2 C2 C3

7. Hydraulics, Fluid Mechanics and Hydraulic Machines by R S Khurmi

Spring Semester L-4, T-I

Sessional (Core)

COURSE INFORMATION									
Course Code	: CE 452	Contact hours	: 3.00						
Course Title	: Highway Materials and Transportation Engineering Design Sessional	Credit hours	: 1.50						
PRE-REOUISI									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a design course of testing and quality control of highway materials. Bituminous mix design; roadway traffic and capacity analysis. Test of aggregate for abrasion and impact by Los Angles Machine, Determination of Road way capacity and saturation flow at intersection.

OBJECTIVE

- Determine properties of aggregates and bitumen using standard methods
- Identify optimum bitumen content by Mix Design
- Estimate capacity and saturation flow of a road section

COURSE CONTENT

Laboratory tests of highway materials: tests on aggregates, tests on bitumen, California Bearing Ratio (CBR); Bituminous mix design: Marshall Method; Los Angeles Abrasion Value test on aggregates (ASTM test); Traffic Engineering: Roadway Capacity, Saturation Flow

No.	COURSE		PROGRAMME OUTCOMES (POs)					COME	S (PO	s)			
	OUTCOMES (COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012
		Ы	Р	P	Ы	Pe	P	P	Ы	Ы	Ы	Ы	Pe
1	Determine properties of aggregates and bitumen using standard methods	\checkmark											
2	Determine road way capacity and traffic saturation flow.			\checkmark									
3	Identify optimum bitumen content and aggregate gradation by Mix Design				\checkmark								

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COU	RSE OUTCOMES AI	ND GENER	IC SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	А	K	Assessment Methods
CO1	Determine properties of aggregates and bitumen using standard methods	1	C3			4,5	Viva, Quiz, Lab Report
CO2	Determine road way capacity and traffic saturation flow.	3	C3	1,2,3		5,6	Viva, Quiz, Lab Report, Presentation
CO3	Identify optimum bitumen content and aggregate gradation by Mix Design	4	C5		1,2	5,6	Viva, Quiz, Lab Report, Presentation

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,
K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)			
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42			

Guided Learning				15
Tutorial/ A	Assignments	(3 hours/week x 5 weeks)	15	
-	ent Learnin	•		
Individual learning (1-hour lecture \approx 1-hour learning)			36	
Preparation for tests and examination			22	
Assessme				
Continuous Assessment			2	
Final examination			3	
Total				120
TEACHI	NG METHO	DDOLOGY		
Lecture an	d Discussion	n, Problem Based Learning (PBL)	
TEACHI	NG SCHED	ULE		
Week	Lectures	Topics		Assessments
1	1	Determination of Aggregate Im	etermination of Aggregate Impact Value	
1	2	Determination of Aggregate Crushing Value		
_	3	Determination of Ten Percent Fines Value		
2	4	Determination of Angularity Number		-
2	5	Determination of Flakiness Index		
3	6	Determination of Elongation Index		
4	7	Determination of Specific Gravity of Semi- Solid Bituminous Material		Lab Report/Viva/Quiz
5	8	Determination of Loss on Heating of Oil and Asphaltic Compounds		
6	9	Determination of Penetration of Bituminous Material		Lab Report/Viva/Quiz
	10	Determination of Softening Point of Bituminous Materials		
7	11	Determination of Flash and Fire Points of Bituminous Materials		
	12	Determination of Ductility of Bituminous Materials		
8	13	California Bearing Ratio (CBR) Test		
		California Bearing Ratio (CBR) Test (contd.)		

Test of aggregate for abrasion and impact by Los Angles Machine

15

10

11	16	Marshall Method of Mix Design		
12	17	Determination of Aggregate Impact Value	Lab Report/Viva/Quiz	
	18	Determination of Aggregate Crushing Value		
13	19	Determination of Roadway Capacity	Lab	
14	20	Determination of Saturation Flow at Traffic Signals	Report/Viva/Quiz/Presentati on	

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy			
Viva	10%	CO1, CO2, CO3	C3, C5			
Observation	05%	CO1, CO2, CO3	C3, C5			
Dement	30%	CO1, CO2, CO3	C3, C5			
Report Presentation	05%	CO3	C3, C5			
Quiz	50%	CO1, CO2, CO3	C3, C5			
Total Marks	100%	CO1, CO2, CO3	C3, C5			
REFERENCE BOOKS						

ASTM testing standards for aggregate, asphalt and mixes
 British standards for testing aggregates, BS 812
 Standard test procedure, RHD, Bangladesh
 MS-2, Asphalt Mix Design Methods, Asphalt Institute

Theoretical (Elective)

COURSE INFORMATION								
Course Code	: CE 453	Lecture contact hours	: 2.00					
Course Title	: Traffic Engineering Design and Management	Credit hours	: 2.00					
DDE DEOLU								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a course depicting traffic flow fundamentals, flow theory, network equilibrium, TIA, traffic control system and design, micro simulation of traffic and ITS, Transportation demand, supply and equilibrium and concepts of traffic managements. After this course students will be able to conduct network analysis using micro simulation software.

OBJECTIVE

- To develop a deep understanding of traffic flow characteristics structural steel
- To gain familiarity with; road traffic assignment, network equilibrium
- Able to demonstrate traffic control devises; Intersection control and design; grade separation and interchanges
- To introduced with advanced concepts of traffic management, management strategies, NMT issues and road safety.

COURSE CONTENT

Analysis of traffic flow characteristics; road traffic assignment, network equilibrium, system optimality; traffic flow theory, shockwaves, deterministic and stochastic queuing analysis; Traffic Impact Assessment (TIA); Introduction to signal optimization tools, traffic control devises; Intersection control and design; grade separation and interchanges; computer application in traffic system analysis; introduction to micro simulation and ITS: Components and Applications; Transportation demand, supply and equilibrium; Advanced concepts of traffic management, management strategies; NMT issues and road safety.

No.	COURSE OUTCOMES (POs) (COs)												
		PO1	P02	PO3	P04	P05	PO6	PO7	PO8	P09	P010	P011	P012
1	Demonstrate various traffic flow theories	\checkmark											
2	Comprehend traffic signalling system, demand and micro simulation tools.												

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning

COU	COURSE OUTCOMES AND GENERIC SKILLS										
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	ď	A	K	Assessment Methods				
CO1	Demonstrate various traffic flow theories	1	C3			4, 5	Class Test, Mid-term, Assignment, Final Exam				
CO2	Comprehend traffic signalling system, demand and micro simulation tools.	2	C4			4, 5	Class Test, Mid-term, Assignment Final Exam				

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	10
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning)	35 22

Prepara	tion for tests	and examination	
Assessi			
	ious Assessn	2	
	kamination		3
Total			100
TEAC	HING MET	HODOLOGY	
Lecture	and Discuss	sion, Problem Based Learning (PBL)	
TEAC	HING SCHI	EDULE	
Week	Lectures	Topics	Assessments
1	1	Analysis of traffic flow characteristics	Class Test/ Mid-
1	2	Analysis of traffic flow characteristics	term/Assignment/Final Exam
	4	Network equilibrium	
2	5	System optimality	
2	7	Traffic flow theory	
3	8	Traffic flow theory	
	10	Deterministic and stochastic queuing analy	sis Class Test/ Mid-
4	11	Traffic Impact Assessment (TIA)	term/Assignment/Final Exam
-	13	Introduction to signal optimization tools	
5	14	Traffic control devises	
6	16	Intersection control and design	Class Test/ Mid-
6	17	Grade separation	term/Assignment/Final Exam
7	19	Interchanges	
/	20	Introduction to micro simulation	
0	22	Components	
8	23	Transportation demand	
0	25	Transportation supply	
9	26	Demand-supply equilibrium	
10	28	Advanced concepts of traffic management	
10	29	Management strategies	
11	31	NMT issues	
11	32	Road safety	
	34	Class Test/ Mid-	
12	35	Shockwaves	term/Assignment/Final Exam
13	37	Introduction to ITS	

	38	Computer application					
1.4	40	ITS Applications;					
14	41	Pedestrian Safety					
ASSES	SMENT STR	ATEGY					
Compo	onents	Grading	СО	Blooms Taxonomy			
CT/ Mi		CO1, CO2	C3, C4				
Final F	Exam	60%	CO1	C3			
			CO2	C4			
Total M	Iarks	100%					
REFE	RENCE BOO	KS					
 Highway Engineering by - Paul H Wright Traffic Engineering and Transport Planning by L.R. Kadiyali Highways – The Location, Design, Construction by Flaherty Principles of Transportation Engineering by Das Transportation Engineering Handbook by Geulias Traffic and Highway Engineering by Garber 							

Theoretical (Elective)

COURSE INFORMATION								
Course Code	: CE 455	Lecture contact hours	: 2.00					
Course Title	: Pavement Management, Drainage and Airport Engineering	Credit hours	: 2.00					
PRE-REQUIS	PRE-REQUISITE							

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will learn to design airfield pavements with software and drainage for highways and airport with appropriate drainage materials. Students will gain knowledge on pavement management system, strengthening and air transportation, aircraft characteristics, configurations, lighting, marking and signage. This will be useful for the students in a later stage of their study, as well as professional life.

OBJECTIVE

- To develop deep understanding on pavement management system (PMS), pavement strengthening, drainage system for highways and airport
- To be acquainted with trends in air transportation, airport configurations and airport planning
- To become skilled at the airfield pavements design using software)

COURSE CONTENT

Pavement management systems; evaluation and strengthening of pavements; Drainage: highway drainage and drainage structures; Airports: importance, advantages and trends in air transportation, Planning and design of airports, aircraft characteristics related to airport design, Types and elements of airport planning studies, airport configuration, geometric design of the landing area, terminal area, heliports, design of airport pavements, lighting, marking and signing, airport drainage, Introduction to airside planning, design and operations software.

No.	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	PO12
1	Understand the principles of pavement management system, strengthening techniques, air transportation, aircraft characteristics, airport		V										

	configurations and other important aspects of airport engineering.						
2	Design road and airport drainage system with appropriate drainage materials to reduce the water related damage.		\checkmark				
3	Design airfield pavements using design software			\checkmark			
soluti Envir Com	Engineering knowledge, P oons, PO4: Investigation, P conment and sustainability, munication, PO11: Project RSE OUTCOMES AND	O5: Moder PO8: Ethio manageme	n tool usages, PO9 : Ind nt and finar	e, PO6 : dividual	The enginand team	neer and a work, P(society, PO7 : D10 :
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Understand the principles of pavement management system, strengthening techniques, air transportation, aircraft characteristics, airport configurations and other important aspects of airport engineering.	2	2	-	_	3, 4	Class Test, Mid-term, Final Exam
CO2	Design road and airport drainage system with appropriate drainage	3	4	-	-	4, 5	Assignment, Class Test, Mid-term,
002	materials to reduce the water related damage.						Final Exam

<u>Knowledge Profile (K)</u>:

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P): P1: Depth of knowledge required, P2: Range of conflicting requirements, P3: Depth of analysis required, P4: Familiarity of issues, P5: Extent of applicable codes, P6: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence **Complex Engineering Activities (A):** A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity **Bloom's Taxonomy Levels:** C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create TEACHING LEARNING STRATEGY Teaching and Learning Activities Engagement (hours) **Face to Face Learning** Lecture (2 hours/week x 14 weeks) 28 **Guided Learning** 10 Tutorial/ Assignments (2 hours/week x 5 weeks) **Independent Learning** Individual learning (1-hour lecture \approx 1-hour learning) 28 Preparation for tests and examination 25 Assessment 2 **Continuous Assessment** Final examination 3 Total 95

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

		-	1
Week	Lectures	Topics	Assessments
1	1	Definition of PMS, purposes & activities at different levels of PMS	
1	2	Pavement condition assessment, determining & prioritizing the needs, life cycle cost analysis	Assignment/ Class Test/ Mid-term/
2	3	Different types of overlays, methods of overlay design	Final Exam
	4	Reflection cracks and early failure of overlay	
	5	Importance of highway drainage, surface and sub- surface drainage, typical sketches	Assignment/ Class
3	6	Drainage materials: aggregates, criteria for drainage materials	Test/ Mid-term/ Final Exam

	7	Drainage materials: Geotextiles, pipes, and drainage structures	
4	8	Introduction: Airports, importance advantages, trends in air transportation	
	9	Trends in air transportation: global, regional and national aspects (Bangladesh)	
5	10	Aircraft Characteristics Related to Airport Design: Dimensional standards, landing gear configuration	-
	11	Aircraft Characteristics Related to Airport Design: Aircraft weight	-
6	12	Runway: Atmospheric conditions affecting aircraft performance, Basic runway length components	Assignment/ Class
7	13	Runway: declared distances, runway length calculation	Test/ Mid-term/ Final Exam
,	14	Types and elements of airport planning studies	
	15	Airport system plan, airport master plan,	
8	16	Airport project plan, airport site selection	
9	17	Geometric design of the airfield: airport Design Standards, airport classifications	-
/	18	Airport configuration: runway	
	19	Taxiway, terminal, heliports	
10	20	Factors in structural design of flexible and rigid airfield pavements	
11	21	Historical development of FAA methods on pavement design	-
11	22	Introduction with FAARFIELD software	
	23	Design with FAARFIELD	-
12	24	Airport lighting, marking and signage: Requirements for visual aids	Assignment/ Class Test/ Mid-term/
	25	Approach lighting, threshold lighting	Final Exam
13	26	Airport drainage system, ponding and no-ponding condition, typical layout sketches	
	27	Introduction to airside planning, design and operations software.	1
14	28	Introduction to airside planning, design and operations software.	

ASSESSMENT STRATEGY									
Components	Grading	СО	Blooms Taxonomy						
Continuous Assessment									
(Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C2, C4, C4						
		CO 1	C2						
Final Exam	60%	CO 2	C4						
		CO 3	C4						
Total Marks	Total Marks 100%								
REFERENCE BOOKS									
 Pavement Analysis and Design, Yang H. Huang Planning and Design of Airport, 5th Ed., Horonjeff 									

 Planning and Design of Airport, 5th Ed., Horonjeff
 Airport Engineering Planning, Design and Development of 21st Century Airports, 4th Ed, Norman J. Ashford

Theoretical (Elective)

COURSE INFORMATION						
Course Code	: CE 457	Lecture contact hours	: 2.00			
Course Title	: Urban Transportation Planning and Management	Credit hours	: 2.00			
PRE-REOUIS	SITE					

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course demonstrates how to conduct an urban transport planning study, develop understanding of urban transport systems. Also enables to develop decision and policy making aids for large-scale, complex transportation systems. Upon completion of this course, students

should have basic understanding of about urban transportation planning is, its theoretical backgrounds, applications, details of public transportation system, travel demand forecasting.

OBJECTIVE

- To understand current transportation planning issues, trends, policies and challenges
- To design and execute an urban transportation planning study
- To acquire effective knowledge on travel demand forecasting
- To understand the evaluation of transportation systems
- To learn about the environmental issues and sustainable transport

COURSE CONTENT

The urban transport problems and trends; road network planning; Sustainable Urban Transportation Index (SUTI);characteristics and operation of different transit and paratransit modes, travel demand and forecasting, planning transit network, estimating system costs and benefits, Transit oriented development (TOD); pricing and financing, evaluation, transit users attitude, policies and strategies for transit development in metropolitan cities; freight traffic planning and management; congestion management; environmental issues and sustainable transport; selected transport case studies.

No.	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COS)	PO1	PO2	PO3	P04	P05	PO6	PO7	P08	60d	PO10	P011	P012
1	Understand urban transportation issues, trends and challenges	\checkmark											

2	Comprehend urban transportation planning skills, especially related to travel demand forecasting	\checkmark								
3	Identify environmental issues and sustainable urban transport requirement and Evaluation techniques					\checkmark				
PO1: soluti Envir Com	ram Outcomes (PO): Engineering knowledge, P ons, PO4: Investigation, P conment and sustainability, munication, PO11: Project RSE OUTCOMES AND	O5: Mod PO8: Etl managen	ern tool usagnics, PO9 : Internet and fination	ge, PO6 : ' dividual .nce, PO1	The engand tear	gineer mwor	and k, P	socie D10 :	ty, PC)7:
		ding							t	
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	×	4		Assessment Methods	
No. CO1	Course Outcomes Understand urban transportation issues, trends and challenges	1 POs	c5 C5	Ч	Α	≥ 3,4	4	Clas Mid-	Wethods Test J Exar	l,
	Understand urban transportation issues,			d.	A		V	Clas Mid Fina Clas Mid	s Test -Term	n, m ,

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

A1: Ra	nge of resour	ing Activities (A): rces, A2: Level of interactions, A3: Innovation ronment, A5: Familiarity	, A4: Consequences to
-	s Taxonomy	-	
C1 : Re	member, C2	: Understand, C3: Apply, C4: Analyze, C5: Ex	valuate, C6: Create
TEAC	HING LEAI	RNING STRATEGY	
Teachir	ng and Learn	ing Activities E	ngagement (hours)
Face to	Face Learn	ling	28
Lecture	(3 hours/we	ek x 14 weeks)	28
Guided	Learning		10
Tutoria	l/ Assignmer	nts (3 hours/week x 5 weeks)	10
-	ndent Learr		
	-	(1-hour lecture \approx 1-hour	22
learning Prepara		and examination	14
Assessi			
	ious Assessn	nent	3
	amination		3
Total			80
		HODOLOGY	
	and Discuss	ollaborative Method,	
	n Based Lear		
	HING SCHI		
Week	Lectures	Topics	Assessments
	1	Course Overview, Urban Transportation Plan	
1		process	Assignment/Mid
	2	Urban Transport Problems and Trend	Term/ Term Final
2	3	Auto Dependency	
2	4	Transit Characteristics	
2	5	Transit Characteristics	
3	6	Transit User Attitude & STP	
	7	Urban Transit Challenges	CT/
4	8	Assignment/Mid Term/ Term Final	
	renn/ renn Final		
5	9		

~	onents	Grading CO	Blooms Taxonomy
ASSES	SMENT	STRATEGY	
14	28	Revision	
14	27	Transport Evaluation	
15	26	Transport Evaluation	
13	25	Transit Pricing	
12	24	Env issues and sustainable transport	Assignment/Mid Term/ Term Final
12	23	Env issues and sustainable transport	CT/
11	22	Road master Plan	
11	21	Trip assignment	
10	20	Trip assignment	
10	19	Mode choice	
7	18	Mode choice	
9	17	Trip Distribution	
0	16	Trip Distribution	
8	15	Trip generation	
1	14	Trip generation	
7	13	Travel demand forecasting	
6	12	TOD	Assignment/Mid Term/ Term Final
C	11	TOD	CT/

Components	Grading	СО	Blooms Taxonomy
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C2, C3
		CO 1	C2
Final Exam	60%	CO 2	C2
		CO 3	C3
Total Marks	100%		
DEFEDENCE DOOKS	•	•	

REFERENCE BOOKS

1. Urban Transportation Planning by M.D. Meyer and E. J. Miller

2. Modelling Transport by Juan de Dios Ortúzar, Luis G. Willumsen

4. Banks, James. (2002). Introduction to Transportation Engineering, 2nd Edition, McGraw-Hill Education. ISBN 978 007 1240345.

5. L.R. Kadiyali "Transportation Engineering and Transport Planning".

*In addition, students will be asked to read book sections, journal articles, and web materials

Theoretical (Elective)

COURSE INFORMATION								
Course Code	: CE 459	Lecture contact hours	: 2.00					
Course Title	Course Title: Intelligent Transportation SystemCredit hours: 2.00							
DDE DEOLU								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course includes components and application of ITS in traffic management and advanced traveler information system. After this course students are expected to apply ITS in traffic management, toll collection, freight transport and emergency evacuation.

OBJECTIVE

- To develop an understanding of ITS standards and architecture; Environmental aspects of ITS To gain familiarity with limit state design philosophy
- To demonstrate different aspects of ITS
- To understand different application of ITS

COURSE CONTENT

History of ITS, ITS standards and architecture; Environmental aspects of ITS; Enabling technologies for ITS; Introduction to mobile application for ITS; Introduction to traffic flow modeling and control; Application of ITS for advanced traffic management, advanced traveler information system, public transport, commercial vehicle operation, freeway incident detection and control, electronic toll collection; Connected vehicle technology and applications; ITS benefits, evaluation and costs.; Freight Transport and Logistics; ITS application to Emergency Evacuation of Traffic.

COURSE OUTCOMES AND SKILL MAPPING

No.	. COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)	1	5	3	4	5	9	Ĺ	8	60	10	11	12
		РО	Ы	PO	PO	РО	P06	PO7	PO8	РО	PO	РО	РО
1	Demonstrate different aspects ITS												
2	Understand different application of ITS		\checkmark										

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COU	COURSE OUTCOMES AND GENERIC SKILLS						
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	А	K	Assessment Methods
CO1	Ability to demonstrate different aspects ITS	1	3			4, 5	Class Test, Mid-term, Assignment, Final Exam
CO2	Ability to understand different application of ITS	2	4			4, 5	Class Test, Mid-term, Assignment Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

<u>Complex Engineering Activities (A)</u>:

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	10
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	35 22
Assessment Continuous Assessment Final examination	2 3
Total	100

TEAC	TEACHING METHODOLOGY						
Lecture	Lecture and Discussion, Problem Based Learning (PBL)						
TEACHING SCHEDULE							
Week	WeekLecturesTopicsAssessments						
1	1	History of ITS	Class Test/ Mid-				
1	2	ITS standards and architecture	term/ Assignment/				
2	4	Environmental aspects of ITS	Final Exam				
2	5	Enabling technologies for ITS					
2	7	Introduction to mobile application for ITS					
3	8	Introduction to traffic flow modeling					
4	10	Introduction to traffic control	Class Test/ Mid-				
4	11	Application of ITS for advanced traffic management	term/ Assignment/				
5	13	Advanced traveler information system	Final Exam				
5	14	Public transport					
6	16 Commercial vehicle operation		Class Test/ Mid-				
6	17	Freeway incident detection and control	term/ Assignment/				
7	19	Electronic toll collection	Final Exam				
/	20	Connected vehicle technology	-				
0	22	CAV application	-				
8	23	ITS benefits					
9	25	ITS evaluation	-				
9	26	ITS costs	-				
10	28	ITS application freight transport					
10	29	ITS application freight transport					
11	31	ITS application to Emergency Evacuation of Traffic.					
11	32	ITS application to Emergency Evacuation of Traffic.					
10	34	ITS application to logistics	Class Test/ Mid-				
12	35	ITS application to logistics	term/ Assignment/				
10	37	ITS to TOD	Final Exam				
13	38	ITS on traffic signal control]				
	40	ITS application to Bangladesh]				
14	41	ITS application to Bangladesh					

ASSESSMENT STRA	ГЕGY					
Components	Grading	СО	Blooms Taxonomy			
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2	C3, C4			
Final Exam	60%	CO1	C3			
Total Marks	100%	CO2	C4			
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2	C3, C4			
REFERENCE BOOKS						
 Principles of Transportation Engineering by Das Transportation Engineering Handbook by Geulias Traffic and Highway Engineering by Garber 						

Sessional (Elective)

COURSE INFORMATION							
Course Code	: CE 454	Lecture contact hours	: 3.00				
Course Title	: Traffic Studies and Pavement Design Sessional	Credit hours	: 1.50				
PRE-REQUIS	PRE-REQUISITE						

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is to develop skills for designing layer thicknesses for highway and airfield pavements, conduct traffic survey and subsequent analysis, design and analysis of road intersection using micro-simulation tools that will be useful in various projects in future.

OBJECTIVE

- To develop skill on how to design layer thicknesses for highways and airfield pavement using both empirical equations/nomographs and Softwares
- To develop the skill to conduct a road condition survey, O-D survey and execute traffic volume and speed studies using field data
- To develop state of the art to analyse traffic and design the road intersection using microsimulation software, i.e., VISSIM

COURSE CONTENT

Design of flexible and rigid pavement and airfield pavements; Geometric design; road intersection design and interchanges; traffic studies; Computer models and application packages.

No.	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Design and analyse layer thicknesses for highways and airfield pavement using both empirical nomographs and Softwares					V							
2	Execute a road condition & O-D surveys and conduct traffic volume & speed studies using field data				\checkmark								

3	Analyse traffic and design the road intersection using micro- simulation software, i.e. VISSIM		V							
PO1: soluti Envir Com	 <u>Program Outcomes (PO)</u>: PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 									
COU	IRSE OUTCOMES AND	GENERIC	SKILLS							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	A	K	Assessment Methods			
CO1	Design and analyse layer thicknesses for highways and airfield pavement using both empirical nomographs and Softwares	5	5			5	Viva/Class Assessment/ Assignment/ Quiz			
CO2	Execute a road condition & O-D surveys and conduct traffic volume & speed studies using field data	4	4			4	Viva/Class Assessment/ Assignment/ Quiz			
CO3	Analyse traffic and design the road intersection using micro-simulation software, i.e., VISSIM	5	5			5	Viva/Class Assessment/ Assignment/ Quiz			

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

	Taxonomy nember, C2 : U	L <mark>evels</mark> : Jnderstand, C3 : Apply, C4 : An	alyze, C5 : Evaluate	e, C6 : Create
TEACH	IING LEARN	NING STRATEGY		
Teaching	g and Learnin	ment (hours)		
	Face Learnir (3 hours/week	•		42
	Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)			15
Independent Learning Individual learning (1-hour lecture \approx 1-hour learning) Preparation for tests and examination				36 22
Assessment Continuous Assessment Final examination				2 3
Total				120
TEACH	IING METH	ODOLOGY	I	
Lecture	and Discussio	n, Problem Based Learning (P	BL)	
TEACH	IING SCHEI	DULE		
Week	Lectures	Topics		Assessments
1	1	Design of Highway Pavemer Design Traffic Calculation, T AASHTO Method 1993		Viva/Quiz/Lab Report/ Presentation
2	2	Analysis of Highway Pavem Mechanistic-Empirical methe elastic system-based softwar	od, by Layered	
3	3	Highway Pavement Design (Method	Rigid): AASHTO	
4	4	Airport Pvt design (Flexible, based and Westergaard Princ	•••	
5	5	Airport Pvt design (Flexible, based and Westergaard Princ		
6	6	Airport Pvt design (Flexible, FAARFIELD		
7	7	Design of Highway Pavemen Design Traffic Calculation, AASHTO Method 1993		

8	8	Road condition survey (objects, geometry, elevation, sign, marking, signals)	Viva/Quiz/Lab Report/ Presentation
9	9	Traffic volume study and OD survey	
10	10	Traffic speed survey (SMS, TMS, Spot Speed)	
11	11	Design of intersection, signal design, lane design, ramp design	
12	12	Traffic Analysis and design of Intersection with VISSIM	
13	13	Traffic Analysis and design of Intersection with VISSIM	
14	14	Traffic Analysis and design of Intersection with VISSIM	

ASSESSMENT STRATEGY

Components	nents Grading CO		Blooms Taxonomy				
Assignment Report & Class Assessment	50%	CO1, CO2, CO3	5, 4				
		CO 1	5				
Quiz	50%	CO 2	4				
		CO 3	5				
Total Marks	100%						
REFERENCE BOOKS							
 Pavement Analysis and Design, Yang H. Huang Planning and Design of Airport, 5th Ed. – Horonjeff 							

3. AASHTO Guide for Design of Pavement Structures 1993

4. Traffic Engineering and Transportation Planning – Kadiyali

5. Highway Capacity Manual, TRB, USA

6. FAA Advisory Circular 150/5320-6E

7.4 Environmental Engineering

Spring Semester L-3, T-I

Theoretical (Core)

COURSE INFORMATION

Course Code	: CE 331
Course Title	: Water Supply Engineering

Lecture contact hours Credit hours : 3.00 : 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides an overview to different aspects of Environmental Engineering. The interconnectedness of the environmental system is emphasized. Students will also learn to deal with technical aspects of drinking water treatment, collection and distribution, and will pay attention to the choice of technologies and tools, ranging from low-cost to advanced options, which will be useful in various projects in the later semesters and in their professional life.

OBJECTIVE

- To develop a basic understanding of environmental engineering especially on water supply engineering.
- To learn water quality criteria and standards, and their relation to public health, environment and urban water cycle
- To gain familiarity with drinking water supply systems, including water transport, treatment and distribution.
- To understand physical, chemical and biological phenomena, and their mutual relationships, occurring within water supply systems.
- To recognize water quality concepts and their effect on treatment process selection.

COURSE CONTENT

Introduction to Environmental Engineering: water, sanitation, ecology and environment; climate change; biodiversity; contemporary environmental issues.

Water Supply Engineering: Water requirement in urban (water demand, population prediction, water demand for street fire hydrant and interior fire protection) and rural communities; the hydrologic cycle and water availability; water supply sources; groundwater exploration: aquifer properties and groundwater flow, well hydraulics, water well design, drilling, construction and maintenance; shallow hand tubewells, deep tubewells, deep set pumps, pond sand filter, rain water harvesting system and alternative water supplies for problem areas. Water supply scenario in Bangladesh and SDG targets.

Surface water collection and transportation; pumps and pumping machineries; water distribution systems; fire hydrants; water meters; water loss control (auditing, unaccounted for water, leak detection and water conservation), Analysis and design of the distribution network.

Water quality requirements; water treatment: plain sedimentation, coagulation, flocculation, filtration, disinfection; miscellaneous treatment methods; low cost treatment methods (arsenic/iron removal plants etc.) for rural communities; water safety plans; Advanced oxidation

COURSE OUTCOMES AND SKILL MAPPING

No	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
•	(COs)	1	5	3	4	5	6	7	8	6	10	11	12
		PO1	PO2	PO3	P04	P05	P06	PO7	PO8	909	PO10	P011	P012
1	To understand the basic concept of ecology, environment, climate change and various component of water supply engineering.	\checkmark											
2	To estimate the fresh water demand and assess the requirements for preferred water supply system in urban and rural areas.												
3	To design construct efficient and cost- effective different components of water treatment plant.			\checkmark									
4	To apply Engineering perception to select suitable options for water supply for economic, public health, environment, and sustainability.							\checkmark					
Prog	gram Outcomes (PO):			1									
PO1 solut Envi	 Program Outcomes (PO): PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning 												
COU	JRSE OUTCOMES AND	GEN	ERI	C SK	ILLS	5							
No.	Course Outcomes	Corresponding	POS		Bloom's Taxonomv		Ь	A		K		Assessment Methods	

CO1	Ability to understand the basic concept of ecology, environment, climate change and various component of water supply engineering.	1	C2	1	_	1, 3	Class Test, Mid-term, Final Exam
CO2	Ability to estimate the fresh water demand and assess the requirements for preferred water supply system in urban and rural areas.	1	C2	1	-	3	Class Test, Mid-term, Final Exam
CO3	Ability to design construct efficient and cost-effective different components of water treatment plant.	3	C4	1,2	-	4	Class Test, Mid-term, Final Exam
CO4	Ability to apply Engineering perception to select suitable options for water supply for economic, public health, environment, and sustainability.	7	C3	1,3	-	5	Class Test, Mid-term, Group Assignment Final Exam

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 14 weeks)	42
Guided Learning	09

Tutorial/ Assignments (3 hours/week x 3weeks)	
Independent Learning	
Individual learning	18
Preparation for tests and examination	46
Assessment	
Continuous Assessment	2
Final examination	3
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Tutorials, Problem Based Learning (PBL)

TEACHING SCHEDULE						
Week	Lectures	Topics	Assessments			
	1	Background of Environmental Engineering, water supply, health and sanitation, history and development of water supply Engg.				
1	2	Importance of water supply Eng., Elements of public water supply, Sources of water supply	Midterm			
	3	Environment and Environmental impacts on Human Life, Water supply, health and sanitation, Ecology and Environment, Role of Environmental Engineer				
	4	Population Estimation and water demand forecasting	CT-1			
2	5	Fire demand calculation and fire hydrant design				
	6	Suitability of sources with regards to quantity and quality, Choice of sources for water supply				
	7	Aquifer properties, basic definitions, types of aquifers, confined and unconfined aquifers				
3	8	Groundwater hydraulics, porosity, seepage, infiltration, permeability				
	9	Surface water collection units, Water treatment units	Mid Term			
4	10	Darcy's law, discharge equation for confined aquifers with example problems				
	11	Discharge equation for unconfined aquifers with example problems				
	12	Water distribution system, Distribution methods				

	13	Withdrawal of excessive groundwater, consequences of groundwater abstraction	
5	14	Basic concept of water well design, sieve analysis, bore hole construction	_
	15	Water transmission line design	
	16	Gravel pack design	
6	17	Well drilling and construction	
	18	Single pipe design, Serial and branched networks	
	19	Water well maintenance	Group Assignment,
7	20	Problems of groundwater in Bangladesh	Final Exam
	21	Looped networks, Hardy Cross Method	_
	22	Pump and pumping machineries, Requirement of water pump	
8	23	Water impurities, water quality requirements	
	24	Water quality standards	CT-2, Final Exam
	25	Plain sedimentation	_
9	26	Coagulation, Flocculation	_
	27	Pump performance curve	
	28	Filtration	_
10	29	Disinfection	
	30	Surface water intake design	Final Exam
	31	Iron and Manganese removal	-
11	32	Arsenic removal	
	33	water supply in coastal saline affected areas	
	34	Alternative and Low-cost water supply options	CT 4 Final Exam
12	35	Taste and odour control	_ CT-4, Final Exam
	36	Water softening	
	37	Auditing of water, Leak detection in water mains, Using water efficient appliances and fixture	
13	38	Advanced Oxidation, Membrane technologies – reverse osmosis	
	39	Water supply scenario in Bangladesh and SDG targets	Final Exam
14	40	Water safety through water safety plans, Water demand management, Water charging/ tariff, Water conservation	

	41	Developing a WSP	eveloping a WSP				
	42]	Review of water tre	eatment options with exa	mples			
ASSES	SMENT STRA	ATEGY					
Compo	nents	Grading	СО	Blooms Taxonomy			
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)							
		40%	CO1, CO2	C2, C2			
Einal E		600/	CO3	C4			
Final Exam		60%	CO4	C3			
Total Marks		100%					
REFE	RENCE BOOH	KS	1				

- 1. Water Supply Engg. MA Aziz.
- 2. Water Supply and Sanitation, M Feroze Ahmed and MM Rahman.
- 3. Principles of Water Treatment, Kerry J. Howe, David W. Hand.
- 4. Water Safety Plan (WSP) A Risk Based Approach for Water Safety 1st Ed., ITN-BUET.
- 5. Water and Environmental Engineering: M. Habibur Rahman, Abdullah Al-Muyeed, 1st Ed., ITN-BUET.

Spring Semester L-3, T-I

Sessional (Core)

Course Code Course Title	: CE 332 : Environmental Engineering Sessional-I	Lecture contact hours Credit hours	: 3.00 : 1.50						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is the practical course on environmental engineering where students will be trained and practiced on various water and wastewater sampling and testing methods. Experience gained from this course will be used in later semesters and also in professional life.

OBJECTIVE

- To impart knowledge to determine and analyse different parameters and substances in water.
- To make the students efficient in performing different environmental experiments to satisfy specific needs and interpret the findings.
- To introduce the students with standard procedure, how the test of water samples are conducted according to the standard code.

COURSE CONTENT

Water and wastewater sampling techniques, sample preservation, physical, chemical and biological tests of water and wastewater; breakpoint chlorination, alum coagulation, sampling and laboratory analysis of air, particulate matter, sampling and laboratory analysis of soil and solid waste, sampling and laboratory analysis of noise.

No.	I ROORAWINE OUTCOMES (103)					-	-						
	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
1	Ability to understand the basic concept of water quality parameters	\checkmark											
2	Ability to estimate different types of water and quality parameters.												

3	Ability to use modern instruments to analyze water quality parameters following standard test protocol in terms of Engineering practice.			\checkmark				
4	Ability to investigate the water quality parameters against their standards and also to interpret data in order to ensure safe water supply requirements to protect public health and environment	\checkmark						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

	COURSE OUTCOMES AND GENERIC SKILLS							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	А	K	Assessment Methods	
CO1	To understand the basic concept of water quality parameters	1	C2	1	-	3	Viva, Quiz, Lab Report	
CO2	To estimate different types of water and air quality parameters.	4	C2	1	-	3	Viva, Quiz, Lab Report	
CO3	To use modern instruments to analyze water quality parameters following standard test protocol in terms of Engineering practice.	5	C3	1,5	-	6	Viva, Quiz, Lab Report	

CO4	To investigate the water quality parameters against their standards and also to interpret data in order to ensure safe water supply requirements to protect public health and environment	2, 10	C4	1,3	4	4	Viva, Quiz, Open Ended Lab
-----	--	-------	----	-----	---	---	----------------------------------

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face to Face Learning Lecture (1 hours/week x 10 weeks)	10						
Experiment (1 hr/week X10 weeks) Data analysis and calculation (0.75 hr/week X 10 weeks)	10 7.5						
Guided Learning Report Writing (2 hours/week x 10 weeks)	20						
Independent Learning							
Preparation for tests and examination	07						
Assessment							
Quiz	2						
Viva	1						
Class Performance(0.25 hr/week X 10 weeks)	2.5						
Total	60						
TEACHING METHODOLOGY							
Lecture and Discussion, Tutorials, Problem Based Learning (PBL)							

TEAC	CHING SCHEI	DULE					
Week	Experiment No	Name of the Experime	Assessment				
	Introduction	Introduction, units of m					
	muoduction	procedure					
1	1	Determination of pH of	water	Viva, Class			
	2	Determination Color of	water	Assessment,			
	3	Determination Turbidity	y of water	Report, Open			
2	4	Determination TS, TDS	, TSS of water	Ended Lab,			
	5	Determination of CO2		Quiz -1			
3	8	Determination of Chlor	ide of Water	Quiz -1			
4	6	Determination of Alkali	nity of water				
4	7	Determination of Hardn	less of water				
5		Quiz 1					
	0	Determination of Bioch	emical Oxygen Demand				
6	9	(BOD5)					
	10	Determination of Chem	ical Oxygen Demand (Co	OD)			
	11	Determination of Total	Iron of Water	Viva, Class			
7	12	Determination of Arsen	ic contamination of wate	r Assessment,			
	13	Alum Coagulation		Report, Open			
8	14	Determination of Total	and Fecal Coliform of wa	ater Ended Lab,			
9	15	Break Point Chlorinatio	n	Quiz -2			
10	16	Noise survey, data colle	ection and laboratory anal	lysis			
11	17	Air quality survey, data	collection and				
11	17	laboratory analysis					
12		Review Lectures and Viva/Assessment					
13		Quiz 2					
14		No class					
ASSE	SSMENT STR	ATEGY					
Comp	Components Grading CO Bloo						

Continuous Assessment (Class Assessment, Report)	20%	CO1, CO2, CO3	C2, C3					
Open Ended Lab	20%	CO4	C4					
Viva Quiz	10% 50% (25% + 25%)	CO1, CO2, CO3, CO4	C2, C3, C4					
Total Marks	100%							
REFERENCE BOOKS								
 A Textbook of Water Supply Engineering by – M.A. Aziz Water Supply and Sanitation by – Ahmed and Rahman Laboratory Manual 								

Theoretical (Core)

COURSE INI	COURSE INFORMATION									
Course Code	: CE 333	Lecture contact hours	: 4.00							
Course Title	: Wastewater and Sanitation Engineering	Credit hours	: 4.00							
		•	·							

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is the second course on environmental engineering where students will be presented with basic knowledge on waste water technology and sanitation, design and construction of sewera, STP and ETP plant and sanitation system. Students will also learn about the environmental impact assessment. Knowledge gained from this course will be used in later semester and also in professional life.

OBJECTIVE

- To gain knowledge on the basics of waste water technology and sanitation options.
- To become skilled at the design and construction of sanitary sewer, storm sewer, waste water treatment plant.
- To learn about the details of sewage treatment methods and design of treatment units.
- To understand the importance of sludge management and learn about the sludge treatment facilities.
- To be acquainted with the sanitation technologies, especially practiced in low-income and developing countries around the world and learn to design those facilities knowing the appropriateness of technologies suitable to specific site condition.

COURSE CONTENT

Introduction to waste management: liquid waste, solid waste.

Introduction to environmental pollution (water pollution, air pollution, noise pollution).

Wastewater Engineering: introduction; estimation of wastewater; wastewater collection systems; hydraulics of sewer; design, construction and maintenance of sanitary sewer and storm drainage system; sewer appurtenances.

Microbiology of wastewater; wastewater characteristics; wastewater treatment and disposal; sludge treatment and disposal;

Sanitation and health; sanitation coverage in Bangladesh and SDG

targets; onsite sanitation system including fecal sludge management

(FSM), pour-flush toilets, septic tank system, Anaerobic Baffled Reactor (ABR); decentralized wastewater treatment systems (DEWATS).

Plumbing system.

Introduction of EIA; Sustainability of water and sanitation services.

COURSE OUTCOMES AND SKILL MAPPING													
No.	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	P010	P011	P012
1	Ability to understand	Ч	Ч	Р	Ч	P	Ц	д	д	Ц	Д	д	Д
	the basic concept of wastewater Engineering, environmental pollution, and environment safety and management.	\checkmark											
2	Ability to comprehend the waste water, solid waste and human waste generation rate and estimate the requirements for preferred sanitation system in urban as well as rural areas.	\checkmark											
3	Ability to design efficient sewerage system and STP with appropriate consideration for public health and safety.												
4	Ability to Apply engineering perception for environmental risks identification and wastewater treatment option selection in terms of economic, public health, Environment and sustainability.							\checkmark					
Prog	ram Outcomes (PO):												
 PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 													
No.	Course Outcomes	Corresponding	POs		Bloom's Taxonomy		Ь	A		K		Assessment Methods	

CO1	Ability to understand the basic concept of wastewater Engineering, environmental pollution, and environment safety and management.	1	C2	1	-	1,3	Class Test, Final Exam
CO2	Ability to comprehend the waste water, solid waste and human waste generation rate and estimate the requirements for preferred sanitation system in urban as well as rural areas.	1	C3	1	-	3	Class Test, Final Exam
CO3	Ability to Apply Engineering perception to construct sewerage networks and building plumbing in terms of economic, public health, Environment and sustainability.	3	C4	1,3	-	3,4	Midterm, Final Exam
CO4	Ability to design efficient sewerage system and STP with appropriate consideration for public health and safety.	7	C5	1,3	-	5	Final Exam

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACH	ING LEARN	IING STRATEGY					
Teaching	g and Learning	g Activities	Engagement (hours)				
Face to Face Learning			56				
Lecture (4 hours/week x 14 weeks)							
Guided Learning			12				
Tutorial/	Assignments	(4 hours/week x 3weeks)	12				
Indepen	dent Learnin	g					
Individu	al learning		22				
Preparation for tests and examination			65				
Assessm	ent						
Continuo	ous Assessmer	nt	2				
Final examination			3				
Total			160				
TEACH	ING METH	ODOLOGY					
Lecture	and Discussion	n, Tutorials, Problem Based Lear	ning (PBL)				
	ING SCHED						
Weeks	Lectures	Topics	Assessment				
	1	Importance of Waste water Eng	gg. Introduction of water				
		supply and waste water product	Final exam CT-1, Final exam				
	2	Significance of waste water, wh					
		Generation of waste water					
1	2	Water, sanitation and health, O					
1	3	environmental sanitation					
		Classification of Wastes and Sa					
	4	Functions of sanitation system Types of sanitation system, Ap					
		system					
		Criteria for a good sanitation system					
	5	Estimation of waste water flow	Final exam				
2	6	Per capita waste water generati					
		seasonal variation, peak dischar					
	7	On-site sanitation systems for r					
		communities					
		Simple pit technology – design considerations and Final					
		design					
	8	Two pit latrine systems – design considerations and					
		design Characteristics of waste water	s of waste water, dissolved solids,				
	9		Midterm,				
3	-	suspended solids		Final exam			

	11	Ventilated Improved Pit (VIP) Latrine, Reed Odorless Earth Closet (ROEC)	
	12	Pour-flash sanitation technologies – design considerations and design	
	13	BOD, COD, DO	
	14	Environmental problems of untreated waste water	
4	15	Pour-flash sanitation technologies – design	-
	15	considerations and design	
	16	Septic tank – design considerations	
	17	Eutrophication, turbidity and water pollution	
	1.0	Sewer, Sewerage and sewage, Collection of waste water,	
5	18	combined system and separate system	
	19	Soak pit design	
	20	Disposal of septic tank effluent	
	21	Sewer hydraulics, Manning's equations, curved sewers	
	22	Derivation of Partial flow equations, hydraulic element	1
		diagrams	CT-2, Final
6		Small Bore Sewerage (SBS) system	exam
0	23	Changes in design criteria for SBS compared to	
		Conventional Sewerage System	
	24	Simplified/ shallow sewerage system, Design principles	
		and design	-
	25	Basic considerations of Sanitary sewer and storm sewer design	
			-
	26	Example of sanitary sewer design of a community	
7	27	Ecological sanitation technologies	Final exam
		Composition and types of sewage, Physical, chemical]
	28	and biological characteristics of sewage, Environmental	
		significance of contaminants	-
	29	Sulfide generation, sewer inspection, construction and maintenance of sewers	
	30	Sewer appurtenances, manhole, Sewer test	
8		Sewage treatment – purpose, phases and unit operations,	
0	31	Preliminary treatment methods – Screening, cutting	
		screen or comminutors and grit chambers	
	32	Preliminary treatment methods – Skimming tank,	CT-3, Final
		preaeration and flow equalization	exam
	33	Importance, history and development of plumbing	
9	_	system	4
-	34	Design of plumbing system for an apartment	

	35	Primary treatment methods – Sedimentation, septic tank (review)	
	36	Primary treatment methods – Imholf tank, dissolved air flotation	
	37	Introduction to EIA,	
	38	Example of an EIA document	
10	39	Secondary treatment – purpose, biological treatment mechanism Important organisms involved in biological treatment	
	40	Role of bacteria in sewage treatment, Bacterial growth pattern in biological treatment, Relation between Food/Microorganism (F/M) ratio and biomass settling characteristics	Final exam
	41	Solid waste problems in Dhaka City	
	42	SWM: Composting and sanitary landfill]
11	43	Types of biological treatment process, Activated sludge process Significance of F/M ratio in activated sludge process	
44	44	Trickling Filter process – mechanisms and biological processes Advantages, disadvantages, influencing factors in trickling filter process, Design of trickling filter	
	45	Sustainability of water and sanitation services	
	46	participatory development approach in water and sanitation sector	CT-4, Final exam
12	47	Waste stabilization ponds – process involved, advantages, disadvantages, Types of stabilization ponds	
	48	Anaerobic pond, facultative pond and maturation ponds, Design preliminaries for waste stabilization ponds	
	49	Community management of water and sanitation services; introduction to environment	
13	50	Introduction of food sanitation	
	51	Design of waste stabilization ponds	Einel
	52	Effluent disposal methods	Final exam
	53	E-waste	
14	54	Env Risk Assessment	
	55	Sludge – types, characteristics, Collection of sludge	

56	Importance of slu disposal methods	idge management, Sludge tre	atment and
ASSESSMENT ST	RATEGY		
Components	Grading	СО	Blooms Taxonomy
Continuous Assessment (CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C2, C3, C4
		CO1	C2
		CO2	C3
Final Exam	60%	CO3	C4
		CO4	C5
Total Marks	100%		
REFERENCE BOO	OKS		

1. Environmental Engineering - Howard S. Peavy, Donald R. Rowe.

2. Water Supply and Sanitation - M Feroze Ahmed and MM Rahman.

3. Wastewater Engineering- Metcalf and Eddy.

4. Environmental Sanitation, Wastewater Treatment and Disposal – Tanveer Ferdous Saeed, Abdullah Al-Muyeed, Tanvir Ahmed.

5. Water Supply and Sewerage- Terence J. McGhee.

Theoretical (Elective)

COURSE INFORMATION										
Course Code Course Title	: CE 431 : Natural Resources and Renewable Energy	Lecture contact hours Credit hours	: 2.00 : 2.00							
PRE-REQUIS	PRE-REQUISITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course explains about different aspects of natural resources including the classification, depletion, protection and management. In this course, students will be introduced with the various technologies related to sustainable extraction of natural resources and optimum utilization of renewable energy which will be useful in their professional life.

OBJECTIVE

- To develop a deep understanding about the classification and importance of natural resources and renewable energy.
- To gain familiarity with various methods of extraction, depletion, protection and management of natural resources..
- To apply modern technologies to extract and utilize natural resources and renewable energy ensuring a non-declining stream of benefits for all.

COURSE CONTENT

Classification, extraction, depletion, protection and management of natural resources.

Overview, history, mainstream technologies; wind power, hydropower, solar energy, biomass, bio-fuel, geothermal energy, gallery, commercialization, growth of renewable, economic trends, hydroelectricity, wind power development, solar thermal, photovoltaic development, photovoltaic power stations, bio fuel development, geothermal development and emerging technologies of renewable energy.

С	COURSE OUTCOMES AND SKILL MAPPING													
N	o. COU	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(CO	S)												
			P01	P02	PO3	P04	PO5	P06	PO7	P08	P09	PO10	P011	P012
			Ι	Π	Π	Ι	Ι	Ι	Ι	I	Π	Ι	Π	Π

1	Ability to understand various aspects of natural resources and renewable energy including their historical importance in the economic development of the country.												
2	Ability to identify different resources management techniques and their corresponding impacts on environment.												
3	Ability to apply various modern technologies for the extraction and protection of natural resources.					\checkmark							
PO1: soluti Envir Comr	 <u>Program Outcomes (PO)</u>: PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10: Communication, PO11: Project management and finance, PO12: Life-long learning COURSE OUTCOMES AND GENERIC SKILLS 												
			LNIC	SKI	LLS								
No.	Course Outcomes	Corresponding	sol		Taxonomy		Ч	A		K		Assessment Methods	
No.			SO		Taxonomy	1	P.		1	K	Mid Pop	Wethods I Exan	,
	Course Outcomes To understand various aspects of natural resources and renewable energy including their historical importance in the economic development of the	Corresponding	sod	Bloom's	Taxonomy	1	<u><u> </u></u>			<u>У</u> 7	Mid Pop Fina Clas Mid Pop	s Test -term, quiz,	m t,

for the extraction, and			
protection of natural			
resources.			

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	28
Lecture (3 hours/week x 14 weeks)	28
Guided Learning	10
Tutorial/ Assignments (3 hours/week x 5 weeks)	10
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour	22
learning)	15
Preparation for tests and examination	15
Assessment	
Continuous Assessment	2
Final examination	3
Total	80

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE						
Week	Lectures	Topics	Assessments			
1	1	Classification and sources of natural resources				
1	2	Extraction techniques of natural resources	CT/ Assignment-1,			
2	3	Depletion and protection of natural resources	— Final Exam			
2	4	Management techniques of natural resources				

Contin	nuous sment	40%	CO1, CO2, CO3	C2, C3			
Comp	onents	Grading	СО	Blooms Taxonomy			
ASSE		STRATEGY					
14	28	Review Class					
	20	Emerging technologie					
13	25	Emerging technologie	•	Final Exam			
	24	Introduction to geothe	*	CT/ Assignment-3,			
12	23 24	Introduction to photov Introduction to bio fue	-				
	22	Introduction to photov	•				
11	21	Importance of solar ar development					
10	20	Importance of solar ar development	-				
	19	Concept of wind powe	er development				
9	18	Introduction to hydroe	electricity				
0	17	Introduction to hydroe	electricity	Final Exam			
0	16	Economic trends of re resources	Economic trends of renewable energy and resources				
8	15	Economic trends of re resources	Economic trends of renewable energy and resources				
1	14	Importance of renewa corresponding growth	22				
7	13	Importance of renewa corresponding growth					
6	12	Introduction to geothe	rmal energy				
6	11	Concept of solar energy	gy, biomass, bio-fuel				
5	10	Concept of solar energy	gy, biomass, bio-fuel				
	9	-	power and hydropower				
4	7	related to natural reso	f mainstream technologies arces				
	6	related to natural reso		_			
3	5	Impact of management resources	t techniques of natural				

(Class assignments/ CT/ Mid Term/ Active Class Participation)						
		CO1	C2			
Final Exam	60%	CO2	C2			
		CO3	C3			
Total Marks	100%					
REFERENCE BOOKS						

- 1. Encyclopedia of Energy, Natural Resource, and Environmental Economics Jason Shogren (1st Edition)
- 2. Natural Resources Available Today and in the Future Erik Dahlquist & Stefan Hellstrand
- 3. Renewable Energy Resources: Basic Principles and Applications G.N. Tiwari & M.K. Ghoshal

Theoretical (Elective)

COURSE INFORMATION								
Course Code Course Title	: CE 433 :Solid and Hazardous Waste Management	Lecture contact hours Credit hours	: 2.00 : 2.00					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will be introduced about solid and hazardous waste management and will learn about different aspects of these wastes including their types, sources, properties and various treatment methods. Students will also learn about the integrated solid waste management and life cycle inventory analysis.

OBJECTIVE

- To identify the characterization of different kinds of solid and hazardous wastes and their treatment.
- To analyze health and environmental issues related to solid waste management.
- To solve solid waste and hazardous problem for ensuring public health safety.

COURSE CONTENT

Solid Waste Management: sources and types of solid wastes; physical and chemical properties of solid wastes; solid waste generation (Separation at source); on-site handling, storage and processing; collection of solid wastes; transfer stations and transport; resources and energy recovery and recycling (Reduction, Re-used & Recycling- 3R concept); decomposition of solid waste: anaerobic treatment/biogasification, aerobic treatment/composting; thermal treatment, land disposal. Hazardous Waste Management: identification, sources and characteristics of hazardous wastes; different types of hazardous waste, hazardous waste management plant; methods of treatment (physical, chemical, biological and thermal treatment; fixation/stabilization) and disposal (landfill and ocean dumping, engineering storage, incineration and deep burial) of hazardous waste, treatment methods of healthcare waste management, categories of healthcare waste, treatment methods of healthcare waste. Integrated solid waste management and live cycle inventory analysis.

No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
	(COS)	PO1	PO2	PO3	P04	P05	PO6	PO7	P08	PO9	PO1 0	PO1	PO1
1	Ability to understand the basic concepts of solid waste management from generation to disposal at different sources and	\checkmark											

	integrated waste management.						
2	Ability to comprehend and estimate various kinds of solid wastes, and their corresponding collection, sorting and treatment methods. Ability to design waste	\checkmark					
5	generation, processing, routing, and collection systems.		\checkmark				
4	Ability to select the most appropriate waste management system in terms of sustainability				\checkmark		
Progr	am Outcomes (PO):		<u> </u>	<u> </u>	I	I	
PO4: Enviro Comn	Engineering knowledge, PO2 : Investigation, PO5 : Modern to onment and sustainability, PO3 nunication, PO11 : Project man	ool usag 8: Ethic agemen	ge, PO6 : T s, PO9 : In nt and fina	he engine dividual	eer and so and team	ociety, P work, P	O7: O10:
COU	RSE OUTCOMES AND GE	NERIC	SKILLS	1			
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Р	A	K	Assessment Methods
CO1	Ability to understand the basic concepts of solid waste management from generation to disposal at different sources and integrated waste management.	1	C2	1		3	Assignment, Pop quiz, Final Exam
	Ability to comprehend and						Class Test,
CO2	estimate various kinds of solid wastes, and their corresponding collection, sorting and treatment methods.	1	C2	1		3	Mid-term, Pop quiz, Final Exam

CO4	Ability to select the most appropriate waste management system in terms of sustainability		C5	1,3		3	Class Test, Mid-term, Pop quiz, Final Exam
-----	---	--	----	-----	--	---	---

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

t (hours)
3 80

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACH	TEACHING SCHEDULE									
Week	Lectures	Topics	Assessments							
1	1 Sources and types of solid wastes		CT/ Assignment-1,							
1	2	Physical and chemical properties of solid wastes	Final Exam							
2	3	Solid waste generation (Separation at source)								

		On-site handling, storage and processing of solid					
	4	wastes					
3	5						
5	6						
4	7 Resources and energy recovery and recycling (Reduction, Re-used & Recycling- 3R concept)						
4	8	Resources and energy recovery and recycling (Reduction, Re-used & Recycling- 3R concept)					
5	9 Decomposition of solid waste: anaerobic treatment/biogasification,						
3	10	Decomposition of solid waste: aerobic treatment/composting;					
6	11	Thermal treatment and land disposal of solid wastes					
6	12						
7	13						
/	14	Hazardous waste management plant					
8	15	Methods of treatment of hazardous wastes (physical and chemical methods)					
0	16	Methods of treatment of hazardous wastes (biological and thermal treatment)	Mid Term/ Assignment-2,				
9	17	Methods of treatment of hazardous wastes (fixation/stabilization)	Final Exam				
9	18	Disposal (landfill and ocean dumping) of hazardous waste					
10	19	Disposal (engineering storage, incineration and deep burial) of hazardous waste					
	20	Nuclear waste management					
11	21	Healthcare waste management					
11	22						
12	23	Treatment methods of healthcare waste					
12	24	Treatment methods of healthcare waste	CT/ Assignment-3,				
12	25	Integrated solid waste management	Final Exam				
13	26	Integrated solid waste management					
14	27	Life cycle inventory analysis					

28	Review Class		
ASSESSMENT STR	ATEGY		
Components	Grading	СО	Blooms Taxonomy
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2, CO3	C2, C4
		CO2	C2
Final Exam	60%	CO3	C4
		CO4	C5
Total Marks	100%		
REFERENCE BOOH	KS		·
(First Edition, ITN	us Waste Management – -BUET) us Waste Management –		z Abdullah Al-Muyeed

 Solid Waste Management (Principles and Practice) - Ramesha Chandrappa & Diganta Bhusan Das (Springer)

Theoretical (Elective)

COURSE INI	FORMATION		
Course Code Course Title	: CE 435 : Environmental Pollution Management	Lecture contact hours Credit hours	: 2.00 : 2.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a course where students will be able to know about different reasons and sources of environmental pollution including water and air. Students will be able to learn the air and water pollution control measures and technologies. Theories of dissolved oxygen model, air quality model will be introduced to the students.

OBJECTIVE

- To gain knowledge on the basics of Environmental pollution.
- To become skilled at controlling surface, marine and groundwater water pollution
- To get acquainted with technologies of controlling air pollution
- To devise the theories for developing dissolved oxygen model

COURSE CONTENT

Environmental pollution and its Control; water pollution - sources and types of pollutants; waste assimilation capacity of streams; dissolved oxygen modelling; ecological balance of streams; industrial pollution; heavy metal contamination; detergent pollution and eutrophication; groundwater pollution; marine pollution; pollution control measures: water quality monitoring and management. Concepts of wetlands. Air pollution: sources and types of pollutants; effects of various pollutants on human health, materials and plants; air pollution meteorology; global warming, climate change and ozone layer depletion; air pollution monitoring and control measures; introduction to air quality models. Noise pollution and control measures.

No.	Io.COURSE OUTCOMESPRODUCT(COs)InterviewInterview				PRO	GRAMME OUTCOMES (POs)							
		P01	P02	PO3	P04	PO5	PO6	PO7	P08	609	PO10	P011	P012
1	To identify causes, effects and sources of water and air pollution in the surrounding environment	√									[

2	To Analyze water and air pollution data to solve hands on problems to design different treatment options to limit such pollution	\checkmark					
3	To Apply different pollution controlling measures for securing public health						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	To identify causes, effects and sources of water and air pollution in the surrounding environment	1	C2	1		1	Class Test, Mid-term, Pop quiz, Final Exam
CO2	To Analyze water and air pollution data to solve hands on problems to design different treatment options to limit such pollution	2	C4	1		4	Class Test, Mid-term, Pop quiz, Final Exam
CO3	To Apply different pollution controlling measures for securing public health	7	C3	1,3		7	Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1 : Depth of knowledge required, P2 : Range of conflicting requirements, P3 : Depth of analysis required, P4 : Familiarity of issues, P5 : Extent of applicable codes, P6 : Extent of stakeholder involvement and conflicting requirements, P7 : Interdependence
Complex Engineering Activities (A):
A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity
Bloom's Taxonomy Levels:
C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create
TEACHING LEARNING STRATEGY

Engagement (hours)
28
10
22 15
2 3 80

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Weeks	Lectures	Topics	Assessment			
1	1	Introduction to Environment, Importance of pollution studies				
1	2	Sources of various Env Pollution; water, air, land				
2	3	Water Pollution-Sources and Types of Pollutants				
2	4	Surface water pollution; river pollution	CT/ Assignment-1, Final Exam			
	5	River pollution around Dhaka City, present scenario				
3	6	Causes of river pollution, sewage and industrial water				
4	7	Effects of river water pollution on surrounding Environment	CT/ Assignment-2, Final Exam			

Final Exam		60% CC	01	C2				
Components Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)		40% CC	01, CO2	C2, C4				
		Grading CC)	Blooms Taxonomy				
ASSESSME	ENT STRAT	TEGY						
14	28	Review of Air quality Diffusion Model	Review of Air quality Standard and Air Diffusion Model					
14	27	Case Study of Air Poll						
	26	Control of air pollution	1	Final Exam				
13	25	Control of air pollution	1	CT/ Assignment-4,				
12	24	Global warming, clima	ate change					
10	23	Air pollution monitori	ng					
11	22	ozone layer depletion;	acid rain					
11	21	Air Diffusion Model, (Gaussian Plume					
10	20	Introduction to air qua	-					
10	19		Air pollution meteorology					
7	18		Air pollution meteorology					
9	17	Effects of various poll health, materials and p		Final Exam				
0	16	Sources and types of A	Air pollutants;	Assignment-3,				
8	15	Introduction to air poll	ution	Mid Term/				
7	14	Wetland and surface w	vater pollution					
7	13	Marine Pollution, Grou	undwater pollution					
	12	Industrial pollution and	d river water quality	\neg				
6	11	Water Quality Index						
	10	DO Sag curve, Ecolog	DO Sag curve, Ecological balance of streams					
5	9	Dissolved Oxygen, BC example problem	DD and COD, BOD					
	8	Waste assimilation cap	bacity, Eutrophication					

		CO2	C4				
		CO2	C3				
Total Marks	100%						
REFERENCE BOOKS	5						
 Environmental Engineering-Howard S. Peavy Environmental Pollution and Control (4th Ed) Author(s):J. Jeffrey Peirce, Ruth F. Weiner and P. Aarne Vesilind 							

- 3. Air Pollution Control : A Design Approach C David Cooper
- 4. Environmental Control and Public Health Water Pollution Control Suresh T. Nesaratnam
- 5. Principles of Water Treatment, Kerry J. Howe, David W. Hand

Theoretical (Elective)

COURSE IN	FORMATION		
Course Code Course Title	: CE 437 : Climate Change and Disaster Management	Lecture contact hours Credit hours	: 2.00 : 2.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a course where students will be able to know about different reasons and sources of environmental hazards. Students will be able to learn the causes of climate change, its impact in human life and nature. Also theories of vulnerability assessment, disaster management, water scarcity in coastal regions, other agricultural and groundwater problems will be introduced to the students so that it can help them in their professional life to mitigate environmental risks.

OBJECTIVE

- To gain knowledge on the basic causes, source and impacts of climate change and related hazards.
- To get acquainted with the reasons and mitigation process of climate change.
- To apply the concept of disaster preparedness and management.

COURSE CONTENT

Brief description of various types, nature, sources, causes and impacts of Environmental hazards experienced in Bangladesh. Cyclones, storm surges, tsunami, flood, salinity intrusion due to sea level rise, water logging and inundation, food insecurity, river bank erosion, river sedimentation problem, extreme droughts, groundwater level depletion, agricultural damages, shortages of fresh water in coastal region, vulnerability assessment, Disaster management, technologies for warning system, role of information in disaster, disaster preparedness.

History of natural disaster, Classification of natural disasters, sources of natural disaster, causes and effects of natural disasters.

No	COURSE OUTCOMES		PROGRAMME OUTCOMES (POs)										
	(COs)	01	02	03	04	PO5	90	07	08	60	PO10	P011	012
1	Identify the root cause of environmental hazards and probable reasons of climate change and its impacts on human life.	d	<u>d</u> , √	P	P(P	P	P	d	P	Ь	d	Ь

2	Understand the concept of disaster preparedness and management							
3	Apply modern technologies for mitigating disaster risk, issuing early warning and initiating rescue operation			1				

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Identify the root cause of environmental hazards and probable reasons of climate change and its impacts on human life.	2	C2	1	-	1	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Understand the concept of disaster preparedness and management	2	C2	1	-	3	Class Test, Mid-term, Pop quiz, Final Exam
CO3	Apply modern technologies for mitigating disaster risk, issuing early warning and initiating rescue operation	5	C3	1,3	-	7	Class Test, Mid-term, Pop quiz, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, P2: Range of conflicting requirements, P3: Depth of analysis
required, P4: Familiarity of issues, P5: Extent of applicable codes, P6: Extent of stakeholder
involvement and conflicting requirements, P7: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	22 15
Assessment Continuous Assessment Final examination Total	2 3 80

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Weeks	Lectures	Topics	Assessment
1	1	Introduction to Climate change and related hazards	
1	2	Sources, causes of various Climate related Environmental hazards	
	3	Impacts of various Environmental hazards	CT/ Assignment-1,
2	4	Introduction to different types of natural disaster	Final Exam
3	5	Effect and causes of Cyclones, storms surges, flood and salinity intrusion for sea level rise	

	6		of Cyclones, storms salinity intrusion for sea				
	7	Water logging and	d inundation, food scarcity	y			
4	8	River bank erosio	n causes and solution	CT/ Assignment-2,			
	9	River sedimentation	on problem and droughts	Final Exam			
5	10	Groundwater leve damages mitigatio	l depletion and agricultur on processes	al			
C	11	Salinity problem i region	n drinking water in coasta	al			
6	12	Salinity problem i region	n drinking water in coasta	al			
7	13	History of natural	disaster and classification	1			
/	14	History of natural	disaster and classification	n Mid Term/			
8	15	Sources and cause	es of natural disaster	Assignment-3,			
8	16	Sources and cause	es of natural disaster	Final Exam			
9	17	Effects of natural	disaster				
7	18	Effects of natural	disaster				
10	19	Vulnerability Asso	essment				
10	20	Vulnerability Asso	ulnerability Assessment				
11	21	Disaster managem	nent and risk mitigation				
11	22	Disaster managem	nent and risk mitigation				
12	23	Technologies for	warning system				
12	24	Technologies for	warning system	CT/ Assignment-4,			
13	25	Information role d	luring disaster	Final Exam			
15	26	Information role d	luring disaster				
14	27	Disaster prepared					
14	28	Disaster prepared	ness				
ASSESSMENT	Γ STRA'	TEGY					
Components		Grading	СО	Blooms Taxonomy			
Continuous Assessment		40%	CO1, CO2, CO3	C2, C3			

(Class assignments/ CT/ Mid Term/ Active Class Participation)								
		CO1	C2					
Final Exam	60%	CO2	C2					
		CO3	C3					
Total Marks	100%							
REFERENCE BOOKS								

- 1. Climate Change, Disaster Management and Environment Alka Chauhan
- 2. Climate Change, Extreme Events and Disaster Risk Reduction: Towards Sustainable Development Goals (Sustainable Development Goals Series)- Springer
- 3. Handbook on Climate Change and Disasters- Edited by Rajib Shaw

Theoretical (Elective)

COURSE INFORMATION									
Course Code Course Title	: CE 439 : Environmental Impact Assessment and Sustainability	Lecture contact hours Credit hours	: 2.00 : 2.00						
PRE-REOIUSITE									

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course provides an overview of the concepts, methods, issues and various forms and stages of the EIA process. This course also introduces the methodology of social impact assessment, In this course, students will also be introduced with the concept of sustainability and the corresponding methods of sustainable management of any project.

OBJECTIVE

- To understand importance of sustainability, major principles and different steps within environmental impact assessment.
- To gain familiarity about social impact assessment and its corresponding objectives and methods in any projects
- To apply concept of sustainability and environmental monitoring/management plan to manage social conflicts and reduce environment degradation of any projects

COURSE CONTENT

Important terms, aims, objectives, roles and methodology of environmental impact assessment; EIA of development schemes; Economical evaluation of EIA; EIA in water resources and industrial projects; Application of EIA; EIA for protection measures; EIA of : draughts in dry season, rainy season, impact of flood, solid waste management etc. Different EIA index calculation. Social impact assessment (SIA): terms, objectives, social variables and indicators, steps, methodologies, importance. Sustainability, SDG, Methods of Sustainable management.

No	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)	PO1	PO2	£O3	PO4	PO5	PO6	PO7	PO8	60d	PO10	P011	P012

1	Ability to understand the roles and methodologies of environmental impact assessment, social impact assessment and sustainable management of resources.	√					
2	Ability to interpret an EIA or SIA through presenting the conclusions and translating the conclusions into actions.			\checkmark			
PO1 solut Envir Com	Ability to apply appropriate methods for sustainable management of resources, EIA or SIA depending on the criteria of the situation. tram Outcomes (PO) : : Engineering knowledge, P ions, PO4 : Investigation, P ronment and sustainability, munication, PO11 : Project JRSE OUTCOMES AND	O5: Modern PO8: Ethic managemer	m analysis, n tool usage s, PO9 : Ind nt and finance	e, PO6 : T lividual a	he engind nd team	neer and work, P	society, PO7 : O10 :
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	K	Assessment Methods
CO1	Ability to understand the roles and methodologies of environmental impact assessment, social impact assessment and sustainable management of resources.	1	C2	1		1,3	Class Test, Mid-term, Pop quiz, Final Exam
CO2	Ability to interpret an EIA or SIA through presenting the conclusions and	6	C3	1,2		7	Class Test, Mid-term, Pop quiz, Final Exam

	conclusions into actions.					
CO3	Ability to apply appropriate methods for sustainable management of resources, EIA or SIA depending on the criteria of the situation.	5, 7	C3	1,3	 6,7	Assignment, Pop quiz

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	TEACHING LEARNING STRATEGY								
Teaching and Learning Activities	Engagement (hours)								
Face to Face Learning Lecture (3 hours/week x 14 weeks)	28								
Guided Learning Tutorial/ Assignments (3 hours/week x 5 weeks)	10								
Independent Learning Individual learning (1-hour lecture ≈ 1-hour learning) Preparation for tests and examination	22 15								
Assessment Continuous Assessment Final examination	2 3								
Total	80								
TEACHING METHODOLOGY									

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEAC	HING SCHI	EDULE				
Week	Lectures	Topics	Assessments			
	1	Environmental Issues in Bangladesh and environmental management				
1	2	Overview of Policies, laws and Regulatory framework for environmental management in Bangladesh				
	3	Guidelines and standards for environmental management in Bangladesh				
2	4	EIA as a planning tool	CT/ Assignment-1, Final Exam			
3	5	Steps in EIA process; how to conduct baseline studies				
	6	How to conduct baseline studies in EIA				
4	7	EIA methodologies: impact evaluation				
4	8	EIA methodologies: significance of impacts				
5	9	Overview of modelling tools to assess impacts on environment				
	10	Sectoral EIA guidelines				
6	11	Economical evaluation of EIA				
6	12	Evaluation of EIA system in Bangladesh				
7	13	EIA in water resources and industrial projects	_			
/	14	Application of EIA				
	15	EIA for protection measures				
8	16	Case Study for EIA: droughts in different seasons, impact of flood, solid waste management etc	Mid Term/			
9	17	Case Study for EIA: droughts in different seasons, impact of flood, solid waste management etc	Assignment-2, Final Exam			
	18	Different EIA index calculation				
10	19	Introduction to social impact assessment (SIA)				
10	20	Social variables and indicators for SIA				
21		Steps in SIA process	1			
11	22					
12	23	SIA methodologies and importance				
12	24	Introduction to Sustainability	CT/ Assignment-3, Final Exam			
13	25	Discussion on SDG				

	26	Discussion on SDG	ł							
14	27	Methods of Sustain	lethods of Sustainable management							
14	28	Review Class	eview Class							
ASSESSMENT STRATEGY										
Compo	nents	Grading	СО	Blooms Taxonomy						
Continu Assessr										
(Class assignments/ CT/ Mid Term/ Active Class Participation)		ive	CO1, CO2, CO3	C2, C3						
			CO1	C2						
Final E	Exam	60%	CO2	C3						
			CO3	C3						
Total M	larks	100%								
REFERENCE BOOKS										
1. Met	hods of Env	ironmental and Social	l Impact Assessment (Natur	al and Built Environment						

 Methods of Environmental and Social Impact Assessment (Natural and Built Environment Series) – Riki Therivel and Graham Wood (4th Edition)

2. Environmental Assessment in Practice (Routledge Environmental Management) - Owen Harrop and Ashley Nixon

3. The Age of Sustainable Development - Jeffrey D Sachs and Ki-moon Ban

Sessional (Elective)

COURSE INI	FORMATION		
Course Code Course Title	: CE 432 : Design of Water Supply, Sanitation and Sewerage Systems	Lecture contact hours Credit hours	: 3.00 : 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a design course of water supply and sewerage system: estimation of industrial, domestic and fire demands, designing deep tubewell and water distribution network; estimation of industrial, domestic and commercial wastewater generation, wastewater network design. Students will be able to learn design of water/wastewater network using different software, household plumbing system design; design of water and wastewater treatment plant; computer application in environmental engineering; field visits and reporting, which will be useful in various professional project designing.

OBJECTIVE

- To develop a deep understanding of water supply and sewerage system
- To be able to design deep tubewell and distribution network.
- To be familiar with different design software.
- To design water and wastewater treatment plant.

COURSE CONTENT

Design of water supply and sewerage system: estimation of industrial, domestic and fire demands, designing deep tubewell and water distribution network; estimation of industrial, domestic and commercial wastewater generation, wastewater network design; design of water/wastewater network using different software; household plumbing system design; design of water and wastewater treatment plant; computer application in environmental engineering; field visits and reporting.

No	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
•	(COS)												
			0	~	+	10	9	4	8	(10	[]	12
		POI	PO2	PO3	P04	PO5	PO6	PO7	P08	909	POI	P01	PO1

1	Use techniques and modern tools in designing industrial waste treatment options for Engineering practice						
2	Develop solutions for fresh water supply system, waste water discharge, storm water flow in urban as well as rural areas						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	A	K	Assessment Methods
CO1	Use techniques and modern tools in designing industrial waste treatment options for Engineering practice	5	C3	1	-	6	Quiz + Viva
CO2	Develop solutions for fresh water supply system, waste water discharge, storm water flow in urban as well as rural areas	3	C5	1,3	-	5	Quiz + Viva

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	27
Lecture (3 hours/week x 9 weeks)	21
Guided Learning	
Report Writing (1 hour/week x 9 weeks)	9
Independent Learning	
Individual learning	06
Preparation for tests and examination	06
Site Visit and Groupwork (3 hours/week x 2	06
weeks)	
Assessment	
Quiz+Viva	06
Total	60

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Learning (PBL)

TEACHING SCHEDULE

Weeks	Lectures	Lecture/Tutorial/Assignment Topic	Assessment
1	1	Introduction, Organogram, Layout of Industrial Village: The Residential Zone, The Commercial Zone The Industrial Zone , The Administrative Zone	Quiz-1, Viva,
2	2	Estimation Population & Water demand	Lab Report
3	3	Design of Water Source	
4	4	Design of Water Source (Contd.)	
5	5	Pump Capacity and Pump Schedule	
6		Quiz 1 & Viva	
7	6	Water Distribution Network (Branch and Loop): Introduction Design of Branch Network for Residential and Commercial Zones	
8	7	Design of Loop Network for Industrial Zone	Quiz-1, Viva, Lab Report
9	8	Sanitary Sewer Design	

10	9	Sanitary Sewer Design (Contd.)	
11	10	Plumbing System	
12	11	Drainage System	
13	12	Software Introduction/ Report Submission	
14		Quiz 2 & Viva	

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Continuous assessment and Quizes	55%	CO1, CO2	C3, C5
Depart with a	250/	CO1	C3
Report writing	35%	CO2	C5
Viva	10%	CO1, CO2	C3, C5
Total Marks	100%		

REFERENCE BOOKS

1. Waste Water Engineering - Metcaf & Eddy (4th edition)

2. Environmental Engineering - H.S. Peavy, D.R. Rowe, G. Tchobanoglous.

3. Harvesting Rainwater from Buildings - Syed Azizul Haque

7.5 Water Resource Engineering

Fall semester L-3, T-II

Theoretical (Core)

COURSE INI	FORMATION		
Course Code	: CE 361	Contact hours	: 3.00
Course Title	: Open Channel Hydraulics	Credit hours	: 3.00
PRE-REQUIS	SITE		

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will be helpful for students to learn how to analyze different parameters of the Open channel flow and its classification; velocity and pressure distributions; energy equation, specific energy and transition problems; critical flow and control. In this course, students will also be introduced with the concept of uniform flow, Chezy and Manning equations, estimation of resistance coefficients and computation of uniform flow; momentum equation and specific momentum; hydraulic jump theory and analysis of gradually varied flow; computation of flow profiles; design of channels etc. These knowledges can be utilized in designing open channels i.e. drainage channels or irrigation canals etc.

OBJECTIVE

- To learn the energy and momentum theories for flow through open channels
- To understand the Manning's and Chezy's equation in designing open channels
- To estimate energy dissipation due to hydraulic jumps in open flows
- To design different type of channels and compute numerically the flow profiles

COURSE CONTENT

Open channel flow and its classification; velocity and pressure distributions; energy equation, specific energy and transition problems; critical flow and control; concept of uniform flow, Chezy and Manning equations, estimation of resistance coefficients and computation of uniform flow; momentum equation and specific momentum; hydraulic jump theory and analysis of gradually varied flow; computation of flow profiles; design of channels

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		P01	P02	PO3	P04	PO5	P06	P07	PO8	909	PO10	P011	P012
1	Able to apply continuity equation, momentum equation, energy equation and concept of critical flow on open channel		\checkmark										

	system and solve real life problems.													
	•													
2	Able to apply the theories of uniform flow and measurement of channel parameters for different types of open channel flow.		\checkmark											
3	Able to analyze gradually and rapidly varied flow, and also compute numerically the flow profiles.		\checkmark											
4	Able to design rigid- boundary and erodible channels.			\checkmark										
	<u>ram Outcomes (PO)</u> : : Engineering knowledge, PO													
Envi Com	: Investigation, PO5 : Mod ronment and sustainability, munication, PO11 : Project m JRSE OUTCOMES AND G	PC anag)8 : geme	Ethi nt ai	cs, P nd fin	O9: ance	: Inc	divi	idual	and	tean	nwork		
					ILLS	5								
No.	Course Outcomes	Corresponding	POs		Bloom's Taxonomy	Τ	Ъ		A		K		Assessment Methods	
No.	Able to apply continuity equation, momentum equation, energy	Corresponding 5	POs			Τ	<u>م</u> 1, 3		A	1,			Assessment Methods	1
	Able to apply continuity equation, momentum equation, energy equation and concept of critical flow on open channel system and solve real life problems. Able to apply the theories of uniform flow and measurement of		POs	(Bloom's Taxonomv	(Y		2	Final Mid-	Quiz,	

C3

1, 3

2

Mid-Term, Final Exam

2, 3

Able to **analyze** gradually and rapidly varied flow, and also compute numerically the flow profiles.

CO3

CO4 Able to design rigid- boundary and erodible channels.	3	C3	1, 2		4	Class Test, Final Exam
--	---	----	------	--	---	---------------------------

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teachir	ng and Learni	ing Activities	Engagement (hours))		
	Face Learn (3 hours/we	ing ek x 14 weeks)	42			
	l Learning l/ Assignmen	ts (3 hours/week x 5 weeks)	15			
Individ learning	g)	ing 1-hour lecture \approx 1-hour and examination	36 22			
Assessi	nent					
Continu	ious Assessm	nent	2			
Final ex	xamination		3			
Total			120			
TEAC	HING MET	HODOLOGY				
Lecture	, Tutorial and	d Problem Based Learning				
TEAC	HING SCHE	EDULE				
Week	Lectures	Topics		Assessments		
	1	Basic concepts of Open Channel	Flow	CT/ Assignment-1		
1	2	Characteristics of open channel flow		1		
	3	flow	1			
	4	Velocity and pressure distribution	1			
2	5	Correction factors for velocity an	d momentum			
	5	Correction factors for velocity an	d momentum			

	6	Continuity and Energy equation	
	7	Concept of Specific energy, specific energy curve	_
3	8	Transition problem	-
0	9	Concept of Critical flow	-
	10	Theories related to critical flow	CT/ Assignment-2
4	11	Computation of critical depths: analytical method	
	12	Computation of critical depths: trial and error method	_
	13	Concept of uniform flow	_
5	13	Uniform flow formulas	-
C	15	Chezy's and Manning's equation	-
	16	Resistance coefficients	Mid Term/
6	17	Computation of normal depth	Assignment-3
	18	Uniform flow for complex channels	-
	19	Hydraulic exponent for uniform flow computation	-
7	20	Computation of normal and critical slopes	-
21		Channel sections with composite roughness	-
	22	Compound Cross-sections	
8	23	Principles of flow measurement and devices	-
-	24	Gradually Varied Flow (GVF): definition	
	25	Dynamic equations of GVF, channel slopes	-
0	26	Flow profiles on Mild and Steep slopes	-
9	27	Flow profiles on Critical, Horizontal and Adverse slopes	
	28	Draw simple profiles	
10	29	Practice complex profiles	
	30	Calculation of critical and uniform depths	
	31	Calculation of simple flow profiles	
11	32	Description of Direct Step method	
11	33	Numerical computation of flow profiles using direct step method	
	34	Hydraulic Jump: definition, practical use, types etc	CT/ Assignment-4
12	35	Hydraulic Jump: derivation of different theories	1
12	36	Hydraulic Jump: computation of jumps and losses of energies	

		Design of Channels: I imple channels	basics, definition, design of							
13	38 I	Design of best hydraulic sections								
	39 I	Design of erodible ch	annels (theory)							
	40 I	Design examples of e	rodible channels							
14	41 I	Design of Alluvial ch	annels: theory							
	42 I									
ASSES	SMENT STRA	TEGY								
Compo	onents	Grading	СО	Blooms Taxonomy						
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)		40%	CO1, CO2, CO3, CO4	C2, C3						
			CO 1	C2, C3						
Final E		600/	CO 2	C2, C3						
Fillai E	zxam	60%	CO 3	C2, C3						
			CO 4	C3						
Total M	larks	100%								
REFE	RENCE BOOK									
 2. Ope 3. Flow 4. Flow 	en Channel Hyd w Through Ope w in Open Chan	raulics by V T Cho raulics by R H Free n channels by Rang nel by K Subrama Open Channel Flov	nch g Raju nya							

Fall Semester L-3, T-II

Sessional (Core)

COURSE INI	FORMATION		
Course Code Course Title	: CE 362 : Open Channel Hydraulics Sessional	Contact hours Credit hours	: 3.00 : 1.50

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

It is a sessional course where students can have a hand on experiment about the state of flow; flow over a broad crested weir; flow through a venturi flume; flow through a parshall flume; flow beneath a sluice gate; study on hydraulic jump; specific energy and specific force curves; discharge and mean velocity of an open channel; change in water surface due to raised channel bottom etc. which will be useful in understanding behavior of flow through open channels.

OBJECTIVE

- To learn the state of flow while passing through open channels with velocity and discharge variation
- To devise the flow profiles and losses of energy when open channel flows passing through different hydraulic structures i.e. weir, sluice gate etc
- To apply the theories of energy and forces on open channel flows
- To learn basics about numerical modelling of 1D and 2D flows through open channels

COURSE CONTENT

Broad-crested weir; sluice gate; venturi flume; parshall flume; cutthroat flume; hydraulic jump; velocity distribution profile; Manning's roughness coefficient; specific force and specific energy; Hydraulic Modeling: basic principles of modeling 1D and 2D river flow, build a 1D or 2D flow model and interpret results.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	P04	PO5	P06	PO7	P08	909	PO10	P011	P012
1	Understand the state of flow while passing through open channels with velocity and discharge variation.												

2	Devise the flow profiles and losses of energy when open channel flows passing through different hydraulic structures i.e. weir, sluice gate etc.	\checkmark						
3	Apply the theories of energy and force on open channel flows.	\checkmark						
4	Understand the basics about numerical modelling of 1D and 2D flows through open channels			\checkmark				

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

	-						
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Understand the state of flow while passing through open channels with velocity and discharge variation.	1	C2		1	5	Lab Report + Quiz+ Viva
CO2	Devise the flow profiles and losses of energy when open channel flows passing through different hydraulic structures i.e. weir, sluice gate etc.	2	C3		1	6	Lab Report + Quiz + Viva
CO3	Apply the theories of energy and force on open channel flows	2	C3		1	3	Lab Report + Quiz + Viva
CO4	Understand the basics about numerical modelling of 1D and	5	C2		3	6	Class Work, Open Ended Lab

2D flows through ope	en			
channels				

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACH	HING LEAR	NING STRATEGY						
Teachin	g and Learni	ng Activities	Engagem	ent (hours)				
	Face Learni (3 hours/week	8	30					
	Learning Writing (1 ho	ur/week x 9 weeks)		01				
-	ndent Learn al learning	ing		10 08				
Assessm Quiz +V				2				
Total				60				
TEACH	HING METH	HODOLOGY						
Lecture	and Experim	ents, Software applications						
TEACH	HING SCHE	DULE						
Week	Lectures	Topics		Assessments				
1	1	Introduction		Lab Manual,				
2	2	Lecture notes, Reference texts etc.						
3	3							
4	4							
5								
6	6	Flow beneath a Sluice Gate						

7	7	Mid Quiz	
8	8	Study on Hydraulic Jump	
9	9	Development and Generalized Specific Energy and Specific Force Curves	
10	10	Determination Discharge and Mean Velocity of an Open Channel	
11	11	Determination of Change in Water Level due to Raised Channel Bottom	
12	12	Development of 1D and 2D River flow model	
13	13	Development of 1D and 2D River flow model	
14	14	Final Quiz + Viva	
ASSES	SMENT STI	RATEGY	

Components	Grading	СО	Blooms Taxonomy							
Continuous Assessment	40%	CO1, CO2, CO3	C2, C3							
(Conduct Lab Test & Lab Report)	40%	01, 02, 05	02,05							
		CO 1	C2							
Quiz & Viva	60%	CO 2	C3							
Quiz & viva		CO 3	C3							
		CO4	C3							
Total Marks	100%									
REFERENCE BOOKS	5									
 Open Channel Hydraulics Sessional Lab Manual Open Channel Flow by V.T. Chow 										

Spring Semester L-4, T-I

Theoretical (Core)

COURSE INFORMATION											
Course Code: CE 463Contact hours: 4.00Course Title: Hydrology and Irrigation EngineeringCredit hours: 4.00											
PRE-REQUIS	SITE										

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will be helpful for students to learn about Hydrologic cycle; Weather and hydrology; Precipitation, Evapo-transpiration; Infiltration; Stream flow; Application of telemetry and remote sensing in hydrologic data acquisition; Rainfall-runoff relations; Hydrographs, unit hydrographs; Hydrologic routing; Statistical methods in hydrology etc. In this course, students will also be introduced with the concept of Plant-soil-water relationship; Consumptive use and estimation of irrigation water requirements; Design of irrigation canal system; Methods of irrigation; quality of irrigation water; problems of irrigated land etc. which will be useful in handling various projects in their professional life.

OBJECTIVE

- To learn basic concepts of hydrology, various process, measurement and estimation of hydrological components: precipitation, evaporation, stream flow etc
- To understand rainfall-runoff relationship, hydrographs and apply various statistical methods for hydrological analysis
- To understand the basic requirements of irrigation and various irrigation techniques, crop water requirements etc
- To design different irrigation canals required for a project with other hydraulic structures

COURSE CONTENT

Hydrologic cycle; Weather and hydrology; Precipitation, evaporation and transpiration; Infiltration; Stream flow; Application of telemetry and remote sensing in hydrologic data acquisition; Rainfall-runoff relations; Hydrographs, unit hydrographs; Hydrologic routing; Statistical methods in hydrology; Plant-soil-water relationship; Consumptive use and estimation of irrigation water requirements; Design of irrigation canal system; Methods of irrigation; quality of irrigation water; problems of irrigated land.

COU	COURSE OUTCOMESAND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	60d	PO10	PO11	P012
1	Describe the basic concepts of hydrology, various process, measurement and estimation of	\checkmark											

	hydrological components: precipitation, evaporation, stream flow etc.								
2	Develop rainfall-runoff relationship, hydrographs and apply various statistical methods for hydrological analysis		\checkmark						
3	Understand the basic requirements of irrigation and various irrigation techniques, crop water requirements etc	\checkmark							
4	Design different irrigation canals required for a project with other hydraulic structures			\checkmark					

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Р	A	К	Assessment Methods
CO1 1 1 1 1	Describe the basic concepts of hydrology, various process, measurement and estimation of hydrological components: precipitation, evaporation, stream flow etc.	1	C2	1, 3		1	Pop Quiz, Final Exam
$CO2 \begin{bmatrix} 1\\ a \end{bmatrix}$	Develop rainfall-runoff relationship, hydrographs and apply various statistical methods for hydrological analysis	2	C4	1, 3		2, 3	Mid-Term, Final Exam
CO3	Understand the basic requirements of irrigation and various irrigation techniques, crop water requirements etc	1	C2	1, 6		1, 4	Mid-Term, Final Exam
CO4 1	Design different irrigation canals required for a project with other hydraulic structures	3	C3	1, 3		4	Class Test, Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

ILACI	IING LEAP	KINING SI KATEG I				
Teachin	g and Learni	ing Activities	Engagen	nent (hours)		
	Face Learn (3 hours/we	ing ek x 14 weeks)		56		
	Learning / Assignmen	ts (3 hours/week x 5 weeks)		14		
Indepe Individu	ndent Learn			48 36		
	nent lous Assessm amination	nent	3 3 160			
	HING MET	HODOLOGY		100		
		, Problem Based Learning				
TEACH	HING SCHE	EDULE				
Week	Lectures	Topics		Assessments		
	1	Introduction: Hydrological Cycle, Catc	hment Area	CT/ Assignment		
1	2	Introduction: Water Budget Equation,	Residence Time			
	3	Weather System: Temperature and Pre in the atmosphere; Weather parameter				
	4	Weather System: Precipitable water in	the air column			
2	5	Precipitation: Formation of precipitation precipitation	on, Forms of			

	6	Precipitation: Measurement of precipitation, Computation of average rainfall, Analysis of Rainfall Data	
	7	Precipitation: Analysis of Rainfall Data; Presentation of Rainfall Data	
3	8	Evaporation: Evaporation process, Estimation of evaporation	
	9	Evaporation: Transpiration and Evapo-transpiration, Estimation of Potential Evapo-transpiration	
	10	Runoff: Components of runoff; Stream characteristics; Yield of a river, Rainfall & Runoff correlation	CT/ Assignment
4	11	Runoff: Flow-Duration curve; Drought: Occurrence, Classification and Management	
	12	Stream Flow Measurement: Stream; Stream Flow and its measurement; Stage of a river and its measurement; Measurement of Discharge by Area-Velocity method	
	13	Stream Flow Measurement: Shifting and Permanent Control; Stage (G)-Discharge (Q) Relationship; Extrapolation of rating curve	
5	14	Infiltration: Infiltration and Infiltration Capacity, Horton's equation for Infiltration Capacity	
	15	Infiltration: Horton's equation for Infiltration Capacity, Infiltration Index	
	16	Infiltration: Infiltration Index	Mid Term/
6	17	Flood: Flood and Peak Flood, Estimating magnitude of peak flood: Rational Method	Assignment
	18	Flood: Flood frequency analysis for estimating peak flood	
	19	Flood: Risk and safety factor	
7	20	Hydrograph: Storm Hydrograph and its component; Factors affecting flood/storm hydrograph	
	21	Hydrograph: Base flow separation technique for measuring Direct Runoff Hydrograph (DRH)	
	22	Irrigation: definition, importance, advantages and ill- effects	
8	23	Methods of irrigation: surface method	
	24	Methods of irrigation: furrow, sprinkler and drip method	
0	25	Development of an irrigation project]
9	26	Sources and Quality of irrigation water	

	27	Quality related problems						
	28	Effective rainfall and irrig	ation efficiencies					
10	29	Estimation of crop water i	requirement					
	30	Irrigation scheduling						
	31	Delta and duty						
11	32	Calculation of available w	ater and scheduling					
	33	Soil-water relationship						
	34	Measurement techniques	of soil moisture	CT/ Assignment				
12	35	Systems of irrigation cana	lls					
	36	Components of an irrigati	on canal					
	37	stification of canals						
13	38	Design parameters of irrig						
	39							
	40	Design of alluvial canals	esign of alluvial canals					
14	41	Diversion head works						
	42	Diversion head works						
ASSES	SSMENT ST	RATEGY						
Compo	onents	Grading	СО	Blooms Taxonomy				
CT/ Mi			CO1, CO2, CO3, CO4	C2, C3, C4				
			CO 1	C2				
Final H	Exam	60%	CO 2	C4				
			CO 3	C2				
			CO 4	C3				
Total M	Aarks	100%						
		OKS	·	•				

1. Irrigation Principles and Practices by Vaughn, E. Hansen, Orson W. Israelsen

2. Applied Hydrology by V T Chow, David R Maidment

3. Irrigation Engineering and Hydraulic Structures by Garg

- 4. Introductory Irrigation Engineering by B. C. Punmia
- 5. Engineering Hydrology by Subramanya

Fall Semester L-4, T-II

Theoretical (Elective)

COURSE INI	COURSE INFORMATION									
Course Code	: CE 465	Contact hours	: 2.00							
Course Title	: Groundwater Engineering	Credit hours	: 2.00							
DDE DEOLU										

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will beable to learn the basic of groundwater in hydrologic cycle and its occurrence; physical properties and principles of groundwater movement; groundwater and well hydraulics; groundwater resource evaluation; groundwater level sand environmental influences; water mining and land subsidence. Through this course, they will gain the expertise on groundwater pollution and contaminant transport; recharge of groundwater; saline water intrusion in aquifers; groundwater management which will enhance their skills in proper using of groundwater in drinking or irrigation purposes.

OBJECTIVE

- To understand the basics of ground water, their physical properties and principles of groundwater movement
- To understand and apply knowledge regarding groundwater resource evaluation, contaminant transport; recharge of groundwater; saline water intrusion in aquifers; groundwater management etc

COURSE CONTENT

Groundwater in hydrologic cycle and its occurrence; Physical properties and principles of groundwater movement; Groundwater and well hydraulics; Groundwater resource evaluation; Groundwater levels and environmental influences; Water mining and land subsidence; Groundwater pollution and contaminant transport; Recharge of groundwater; Saline water intrusion in aquifers; Groundwater management.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	909	PO10	P011	P012
1	Understand the basics of groundwater; physical properties and principles of groundwater movement; well hydraulics	\checkmark	\checkmark										

2	Apply knowledge regarding groundwater resource evaluation, contaminant transport; recharge of groundwater; saline water intrusion in aquifers; groundwater management	V	\checkmark				
	<pre>ram Outcomes (PO): Engineering knowledge, PO2:</pre>	Probler	n analysis.	PO3 : De	sign/de	velopmer	nt of solutions.
PO4 : Envir	Investigation, PO5 : Modern to onment and sustainability, PO nunication, PO11 : Project mar	ool usag 8: Ethics	e, PO6 : Th s, PO9 : Inc	e enginee lividual a	er and so nd team	ociety, P(work, P(D7: D10:
COU	RSE OUTCOMES AND GE	NERIC	SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ρ	А	K	Assessment Methods
CO1	Understand the basics of groundwater; physical properties and principles of groundwater movement; well hydraulics	1, 2	C2	1, 3		5	CT/ Assignment/ Final Exam
CO2	Apply knowledge regarding groundwater resource evaluation, contaminant transport; recharge of groundwater; saline water intrusion in aquifers; groundwater management	2, 3	C3	1, 3		3, 5	Mid Term/ Assignment/ Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACH	ING LEAR	NING STRATEGY		
Teaching	g and Learnin	g Activities	Engager	nent (hours)
Face to	Face Learni	ng		
		k x 14 weeks)	28	
	Learning	,		
	-	s (2 hours/week x 5 weeks)	10	
Indepen	dent Learni	ng		
-		-hour lecture \approx 1-hour learning)	22	
		and examination	15	
Assessm				
	ous Assessme	ent	2	
	amination		3	
	ammation		-	
Total			80	
TEACH	ING METH	ODOLOGY		
Lecture	and Tutorials	, Problem Based Learning (PBL)		
TEACH	ING SCHE	DULE		
Week	Lectures	Topics		Assessments
	1	Introduction to Groundwater Er	gineering	CT/ Assignment/
1	2	Groundwater in hydrologic cycl	le and its	Final Exam
		occurrence		-
2	3	Groundwater in hydrologic cycl occurrence	le and its	
2	4	Physical properties of groundwa	ater movement	-
	5	Physical properties of groundwa		-
3	6	Principles of groundwater move		
4	7	Principles of groundwater move	ement	
4	8	Principles of groundwater move	ement	
5	9	Groundwater and well hydraulid	CS	
5	10	Groundwater and well hydraulid	CS	
6	11	Groundwater and well hydraulie		Mid Term/
	12	Groundwater resource evaluation		Assignment/ Final
7	13	Groundwater resource evaluation		Exam
	14	Groundwater level sand enviror		-
8	15	Groundwater level sand enviror		4
	16	Groundwater level sand environ		-
9	17	Water mining and land subsider		-
	18	Water mining and land subsider		-
10	19	Groundwater pollution and cont	-	-
	20	Groundwater pollution and cont		4
11	21	Groundwater pollution and cont	taminant transport	4
_	22	Recharge of groundwater		

10	23	Recharge of groundwater	CT/ Assignment/
12	24	Saline water intrusion inaquifers	Final Exam
	25	Saline water intrusion in aquifers	
13	26	Groundwater management	
14	27	Groundwater management	
17	28	Review Class	

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy							
Continuous Assessment										
(Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2	C2, C3							
Final From	<u>(0)</u>	CO1	C2							
Final Exam	60%	CO2	C3							
Total Marks	100%	CO1, CO2	C2, C3							
REFERENCE BOOKS										
1. Groundwater Engineering by	y Toad									
2. Groundwater Hydrology by										
3. Fundamentals of Ground Wa	•	Z								

4. Hydraulics of Groundwater by Jacob Bear

Fall Semester L-4, T-II

Theoretical (Elective)

0.05													
COUR	SE INFORMATION												
Course	Code : CE 467					Con	tact ł	ours			: 2.00)	
Course	Title: Flood Mitigation	and N	Mana	gem	ent	Crea	lit ho	urs			: 2.00)	
PRE-R	EQUISITE												
None													
CURR	ICULUM STRUCTURE												
Outcon	ne Based Education (OBE)												
SYNO	PSIS/RATIONALE												
water,	course students will be able structural and non-structura al skillsets required in the desh.	l mea	asure	s to 1	mitiga	ate flo	od d	amag	e. The	e cou	rse wi	ll pro	vide
OBJE	CTIVE												
Vult COUR Flood a as reset manage Econor losses o	understand the economic as nerability analysis, direct an SE CONTENT and its causes; methods of fur- rvoirs, levees and flood wa ement, flood proofing, flood nic aspects of flood manage of flood, flood damage asses SE OUTCOMESAND SK	lood n llood n lls, c l zoni ement	mana mana hann ng, fi :: floo nt, flo	losse agem el im lood od ris bod d	ent: si nprove hazar sk and amag	flood, tructu ement d map l vuln	floo ral and , inte oping aerabi	d dam nd nor erior c , floo lity a	n-stru lraina d fore nalysi	ctura ge, fl castin	ment e l meas lood w ng and	sures /ays, l warr	land ning.
	COURSE OUTCOMES					GRAN	ME		COM				
	(COs)							001					
		PO1	P02	P03	P04	PO5	P06	PO7	PO8	P09	PO10	P011	PO12
	Understand the basics of flood and its causes; structural and non- structural methods of flood management												
2	Apply the economic aspects of flood management including flood risk and vulnerability analysis, direct and indirect losses of flood, flood damage assessment, flood												

	damage in urban and rural areas.									
Progr	ram Outcomes (PO):								l	
PO1: PO4: and su	Engineering knowledge, PO2 Investigation, PO5: Modern to ustainability, PO8: Ethics, PO ct management and finance, PO	ool usage 9: Indiv	e, PO6 : Th idual and t	e enginee eamwork	er and so	ociety	, P O)7 : Envi	ronm	nent
COU	RSE OUTCOMES AND GE	NERIC	SKILLS							
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ч	A	K	V	Assessment	Methods	
CO1	Understand the basics of flood and its causes; structural and non- structural methods of flood management	1	C2			5		CT/ Assign Final E		
CO2	Apply the economic aspects of flood management including flood risk and vulnerability analysis, direct and indirect losses of flood, flood damage assessment, flood damage in urban and rural areas	2	C3			3, 5		Mid Te Assign Final E	men	

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28

Guided Learning Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	22
Preparation for tests and examination	15
Assessment	
Continuous Assessment	2
Final examination	3
Total	80

TEACHING METHODOLOGY

Lecture and Discussion, Tutorials

TEACHING SCHEDULE

Week	Lectures	Topics	Assessments
1	1	Introduction to Flood Mitigation and Management	CT/ Assignment
1	2	Types of flood and its causes	
	3	Types of flood and its causes	
2	4	Structural methods of flood management:	
		reservoirs	
	5	Structural methods of flood management: levees	
3	6	Structural methods of flood management:	
		embankment	
	7	Structural methods of flood management: flood	
4		walls	
-	8	Structural methods of flood management: flood	
		bypass	-
	9	Non-Structural methods of flood management:	
5 10		land management	4
	10	Non-Structural methods of flood management:	
		flood proofing	
	11	Non-Structural methods of flood management:	Mid Term/
6		flood zoning	Assignment
0	12	Non-Structural methods of flood	
		management: flood hazard mapping	-
	13	Non-Structural methods of flood management:	
7		flood forecasting	-
	14	Non-Structural methods of flood management:	
	1.7	early warning system	-
8 15		Functions and ecology of river-floodplain system	-
-	16	Functions and ecology of river-floodplain system	-
9	17	Functions and ecology of river-floodplain system	
7	18	Flood risk and vulnerability analysis	
10	19	Flood risk and vulnerability analysis]
10	20	Flood risk and vulnerability analysis	

	21	Flood for	ecasting				
11	22		Economic aspects of flood management: direct				
		losses of f					
	23		-	od management: ind	direct	CT/ Assignment	
12		losses of f	lood	-			
	24	Flood dan	nage assessme	nt			
13	25	Flood dan	nage assessme	nt			
15	26	Flood dan	nage in urban	and rural area			
1.4	27	Flood dan	nage in urban	and rural area			
14	28	Review C	lass				
ASSES	SSMENT S	TRATEGY					
Comp	onents		Grading	СО	B	looms Taxonomy	
	uous Assess		40%	CO1, CO2 C2, C3		2, C3	
(Assigi	nments/CT/	Mid Term)					
Final I	From		60%	CO1	C	2	
Final Exam			0070	CO2	C	3	
Total N	Aarks	2, C3					
REFERENCE BOOKS							
1. Flo	od Control	and Drainage I	Engineering by	y Ghosh			
2. Pri	nciples of W	Vater Resource	s Planning by	Dr. Aynon Nishat			

Fall semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION						
Course Code	: CE 469	Contact hours	: 2.00			
Course Title	: River Engineering	Credit hours	: 2.00			

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course students will be able to learn the basic of river engineering and the morphological processes related to river. After this course they will become skilled at the design and construction of different types of small structures such as Groyne, Guide bund etc. which will enhance their skills of designing hydraulic structures in professional life.

OBJECTIVE

- To gain knowledge on the basics of river engineering, morphology, scouring and the aggradation-degradation processes
- To gain the basic knowledge on river training work and be able to design different types of structures such as groyne, guide bund etc

COURSE CONTENT

Behaviour of alluvial rivers; river channel pattern and fluvial processes; aggradations and degradation, local scours; river training and bank protection works; navigation and dredging; sediment movement in river channels, bed form and flow regimes; Application of mathematical models for river problems.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES (COs)	PROGRAMME OUTCOMES (POs)											
		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	P011	P012
1	Understand the basics of river engineering, morphology, scouring and the aggradation- degradation process.	\checkmark											
2	Apply the understanding of basic knowledge on river training work and design of river training works.		\checkmark	\checkmark									

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COU	COURSE OUTCOMES AND GENERIC SKILLS								
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ч	А	K	Assessment Methods		
CO1	Understand the basics of river engineering, morphology, scouring and the aggradation- degradation process.	1	C2			5	CT/ Assignment/ Final Exam		
CO2	Apply the understanding of basic knowledge on river training work and design of river training works.	2, 3	C3	1, 7		3, 5	Mid Term/ Assignment/ Final Exam		

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

<u>Complex Engineering Activities (A)</u>:

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)		
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28		
Guided Learning Tutorial/ Assignments (2 hours/week x 5 weeks)	10		
Independent Learning			
Individual learning (1-hour lecture \approx 1-hour learning)	22		
Preparation for tests and examination	15		

Assessm	nent		
Continu	ous Assessm	ent	2
Final exa	amination		3
Total		80	
TEACH	IING METH		
Lecture	and Discussi	on, Problem Based Learning	
TEACH	IING SCHE	DULE	
Week	Lectures	Topics	Assessments
	1	Introduction to River Engineering	CT/ Assignment/
1	2	Classification of rivers	Final Exam
		Basic river parameters	
		Meandering processes and its parameters	
		Development of Oxbow lake	
	3	Basic river channel pattern	
		Agents and processes that shape the earth su	rface
		River system and parts of a river system	
2		Stream patterns on landform	
2	4	Introduction to river morphology	
		Fluvial processes	
		Impact of fluvial processes on landscape	
		Some basic stream pattern	
	5	Classification of erosion	
		Valley and interfluve	
		The shaping and reshaping of valleys and	
3		interfluves	
	6	Introduction to floodplain	
		Stream rejuvenation	
		Formation of landforms	
	7	Introduction to River training works	
4		Objective of river training works	
-	8	Classification of different river training work	KS
		Brief on the types of river training works	
	9	Groyne, Guide bank, Levees, Embankment	
		Typical layout of river training works	
5		Classification of guide bund	
		Design considerations of a guide bund	
	10	Typical design of a guide bund.	
	11	Groyne, Objectives of Groyne, Types of Gro	•
		Suitability of Groyne and its applicability in	-
		river training work	Exam
6		Description of different types of Groyne	
	12	Introduction to levees or marginal bund	
		Design consideration of levees	
		Causes of failure of a levee	

	13	Advantages and disadvantages of river training by	
	15	embankment	
7		Suitability of different hydraulic structure in Bangladesh	
/	14	Different types of bank protection work	-
	14	Purpose of bank protection	
	15		-
	15	Applicability of Sheet pile, Riprap, Gabions and Falling Apron	
	16	Introduction to navigation and dredging	-
8	10	Various requirements of a navigable waterway	
0		Brief on various measures on achieving	
		navigability	
		Description of open channel method	
	17	Importance of contraction works in the river	-
	17	training works	
		Lock and Dam arrangement in a river	
		Different types of dam, barrages and weirs	
9	18	Introduction to different temporary river	-
	10	improvement technique	
		Details of bandaling system and its feasibility	
		Surface panel system and its applicability	
	19	Dredging and its classification	-
		Different types of dredgers used to achieve	
		navigability	
10		Brief on bucket dredger, cutter dredger, dustpan	
		dredger and hopper dredger.	
	20	Aggradation and degradation process in a river	
		Lanes balance analogy	
	21	Effects of aggradation and degradation in a river	
		bed and banks	
11	22	Effects of aggradation and degradation in a river	
11		bed and banks Measures to prevent the	
		degradation process in a river.	
		Occurrence of aggradation in a channel.	
	23	Scouring and its classification.	CT/ Assignment/
		Differences between general scour, constriction	Final Exam
		scour and local scour	
		Clear water scour and live bed scour, Local scour	
		and its types	
		Possible cases of local scour and local scour	
12		around a bridge pier	4
	24	Flow pattern around a cylindrical pier	
		Formation of horseshoe vortex and cast-off	
		vortices	
		Scouring process around an abutment.	
		Scouring due to the presence of hydraulic structure	
		Some problems related to local scouring	

	25	Sediment transport in a river channel	
		A complete river system	
13		Types of sediment transport	
15	26	Description of sediment load	
		Sediment characteristics	
		Brief on different sediment transport model	
	27	Flood and its control	
1.4		River training to control flood	
14		River training to guide flow	
	28	Review Class	

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy					
Continuous Assessment (Class assignments/ CT/ Mid Term/ Active Class Participation)	40%	CO1, CO2	C2, C3					
Final Exam	60%	CO1	C2					
	00%	CO2	C3					
Total Marks	100%	CO1, CO2	C2, C3					
REFERENCE BOOKS								
1. River Mechanics by P Y Julian								
2. River Morphology by Garde								
3. River Engineering by K D G	1							
L Fluvial Processes in River by Howard H Chang								

4. Fluvial Processes in River by Howard H Chang5. Principles of River Engineering by Chang

Fall semester L-4, T-II

Theoretical (Elective)

COURSE INFORMATION									
Course Code	Course Code : CE 471 Contact hours : 2.00								
Course Title	: Hydraulic Structure Credit hours : 2.00								
PRE-REQUIS	SITE								
None									
CURRICULU	JM STRUCTURE								
Outcome Base	d Education (OBE)								
SYNOPSIS/RATIONALE									
		rinciples and analysis of bot	th static and dynamic						
In this course water loads, fa will be able to	ATIONALE students can learn about basic p ailure characteristics and operation perform design calculations of designing hydraulic structures in	on of hydraulics structures. A different hydraulic structure	After this course they						
In this course water loads, fa will be able to	students can learn about basic p ailure characteristics and operation perform design calculations of lesigning hydraulic structures in	on of hydraulics structures. A different hydraulic structure	After this course they						

Hydraulic structures – characteristics and types: Diversion head works; Principles of design hydraulic structures; Design of dams, barrages, weirs, spillways, energy dissipators; Cross drainage works, Reservoir.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
1	Understand the basic principles and analysis of both static and dynamic water loads, failure characteristics and operation of hydraulics structures.												
2	Apply understanding of the basic principles and concepts of analysis and design of hydraulic structures			V									

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions, PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, PO11: Project management and finance, PO12: Life-long learning

COU	COURSE OUTCOMES AND GENERIC SKILLS								
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ъ	Α	K	Assessment Methods		
CO1	Understand the basic principles and analysis of both static and dynamic water loads, failure characteristics and operation of hydraulics structures.	1	C2	1, 3		5	CT/ Assignment/ Final Exam		
CO2	Apply understanding of the basic principles and concepts of analysis and design of hydraulic structures	3	C3	1,7		3, 5	Mid Term/ Assignment/ Final Exam		

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge, K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: **Research** literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, P2: Range of conflicting requirements, P3: Depth of analysis required, P4: Familiarity of issues, P5: Extent of applicable codes, P6: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, **A5**: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (2 hours/week x 14 weeks)	28
Guided Learning Tutorial/ Assignments (2 hours/week x 5 weeks)	10

Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	22
Preparation for tests and examination	15
Assessment	
Continuous Assessment	2
Final examination	3
Total	80
TEACHING METHODOLOGY	

Lecture and Tutorials, Design Projects, Problem Based Learning (PBL)

TEACH	TEACHING SCHEDULE						
Week	Lectures	Topics	Assessments				
1	1	Fundamentals of hydraulic structures	CT/ Assignment/				
1	2	Different types of Hydraulic Structures	Final Exam				
2	3	Failure of foundation, Seepage theory					
Z	4	Bligh's and Lane's Creep theory					
3	5	Khosla's theory					
3	6	Examples based on Khosla's theory					
4	7	Weir: definition, types, design parameters					
4	8	Design of a vertical drop weir					
5	9	Design details of weir foundation					
5	10	Barrage: details design parameters					
	11 Design of a modern barrage		Mid Term/				
6	12	Dam: classification, components, construction of dams	Assignment/ Final Exam				
7	13	Gravity dam, arch dam, buttress dam and embankment dam					
	14	Safety of a dam and rehabilitation					
8	15	Design of a Gravity Dam: Stability check					
8	16	Design of a Gravity Dam: detail design					
9	17	Spillway: necessity, location and discharge capacity of spillways					
	18	Spillway: types, components, spillway gates					
10	19	Design of Ogee Spillway					
10	20	River Training Works					
11	21	Guide Bank					

	22	Deta	il design of a gu					
12	23	Groy	rnes, Cut-offs, L	CT/ Assignment/				
12	24	Cros	s drainage work	Final Exam				
10	25	Desig	gn of a cross dra					
13	26	Rese	rvoir: characteri	stics, capacity, sedime	ntation			
14	27	Ener	gy dissipator, de	sign of stilling basin				
14	28	Revi	ew					
ASSES	SMENT S	TRATEO	GY					
Compo	nents		Grading	СО	CO Blooms Tax			
(Class a	ious Assess issignments rm/ Active ation)	s/ CT/	40%	40% CO1, CO2 C2		2, C3		
E' 1 E						C2		
Final E	xam		60%	CO2 C3		C3		
Total Marks 100% CO1, 0					C	2, C3		
REFEI	RENCE BO	OOKS						
 Irrig Irrig 	gation and V	Water Pov Water Res	Garg wer Engineering sources Engineer rigation Structur	ring by Asawa				

4. Theory and Design of Irrigation Structure by Varshney5. Dam and Appurtenant Hydraulic Structure by Ljubomir Tanchew

Fall semester L-4, T-II

Theoretical (Elective)

COURSE INI	COURSE INFORMATION								
Course Code	: CE 473	Contact hours	: 2.00						
Course Title : Coastal Engineering Credit hours : 2.00									

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course, students will be able to learn the basic of coast and coastal features; deltas and estuaries; tide; wave; storm surge; tsunami; port, dock and harbour; wave forces on coastal structures; coastal sedimentation processes. After this course they will become skilled at the design and construction of different types of shore protection works which will enhance their skills of designing coastal structures in professional life.

OBJECTIVE

- To understand characteristics of tides, theory behind tidal analysis and prediction, tidal flow measurement,
- To understand and apply the principles of coastal processes, sediment transport, deltas and delta management plan, estuary and estuarine control,
- To be skilled at fundamental concepts in designing shore protection works.

COURSE CONTENT

Coast and coastal features; deltas and estuaries; tide; wave; storm surge; tsunami; port, dock and harbour; wave forces on coastal structures; coastal sedimentation processes; shore protection works; design of shore protection structure.

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES	PROGRAMME OUTCOMES (POs)											
	(COs)		PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012
1	Understand the basics of coastal processes ie waves, tides, sediment transport and able to calculate forces on coastal structures.	\checkmark											
2	Apply the understanding of basic knowledge to design shore protection work.			V									

Program Outcomes (PO):

PO1: Engineering knowledge, PO2: Problem analysis, PO3: Design/development of solutions,
PO4: Investigation, PO5: Modern tool usage, PO6: The engineer and society, PO7:
Environment and sustainability, PO8: Ethics, PO9: Individual and teamwork, PO10:
Communication, PO11: Project management and finance, PO12: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	A	K	Assessment Methods
CO1	Understand the basics of coastal processes ie waves, tides, sediment transport and able to calculate forces on coastal structures.	1	C2			3	CT/ Assignment/ Final Exam
CO2	Apply the understanding of basic knowledge to design shore protection work.	3	C3	1, 3		3, 5	Mid Term/ Assignment/ Final Exam

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	28
Lecture (2 hours/week x 14 weeks)	20
Guided Learning	10
Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent Learning	
Individual learning (1-hour lecture \approx 1-hour learning)	22
Preparation for tests and examination	15

Assessn	nent						
Continu							
Final ex							
Total			80				
TEACH	IING METH	IODOLOGY					
Lecture	and Discussi	on, Problem Based Learning (PBI	.)				
TEACH	IING SCHE	DULE					
Week	Lectures	Topics		Assessments			
	1	Introduction to Coastal Engineerin	g	CT/ Assignment/			
1	2	Tides and coastal processes: Terms Characteristics of tides, Tide chart	s and Definitions,	Final Exam			
2	3	Theory behind tidal analysis and p of tidal analysis and prediction	rediction, Methods				
	4	Harmonic analysis of water level a	nd current data]			
2	5	Definition of wave parameters, wa characteristics	ves and its				
3	6	Linear wave theory: wave celerity, the sinusoidal wave profile	length, and period,				
4	7	Sediment transport					
4	8	Sediment transport					
5	9	Deltas, deltaic coasts, delta morphe	ologies				
5	10	Storm surge, wind stress					
6	11	Tsunami: physical characteristics of tsunami	of tsunami, causes of	Mid Term/ Assignment/ Final			
6	12	Tsunami: mitigation of risks and h and early warnings	azards, prediction	Exam			
7	13	Hydrodynamics and Sediment Dyn	namics of Tidal Inlets				
7	14	Coastal-Offshore Ecosystem					
0	15	Estuarine Sediment Dynamics]			
8	16	Estuarine Cohesive Sediment Dyna	amics]			
	17	Offshore and Coastal Modelling]			
9	18	Harbour layout: Types, port terms, features					
10	19	Harbour planning and Layout]				
10	20	Types and function of coastal st]				
11	21	Design of shore protection works					
11	22	Design of shore protection works					
10	23	Functional design of coastal struct	CT/ Assignment/ Final Exam				
12	24	Design of coastal revetments	-				
13	25	Design of coastal sea walls]			

	26	Design of c	Design of coastal sea bulkheads										
14	27	Environmental impacts of coastal structures Review Class											
14	28	Review Cl	ass										
ASSES	SSMENT S	TRATEGY											
Components Grading CO Blooms Taxonomy													
(Class	uous Assess assignments Active Clas pation)	s/ CT/ Mid	40%	CO1, CO2	C2, C3								
E' 11	7		<00/	CO1	C2								
Final H	Exam		60%	CO2	C3								
Total N	/larks		100%	CO1, CO2	C2, C3								
REFE	RENCE BO	OOKS											
 Basic Coastal Engineering by R M Sorensen Sediment Control Handbook by Jackson Sediment Transport Technology: Water and Sediment Dynamics by Daryl B Simons and Fuat Senturk 													

Coastal Engineering Manual by US Army Corps of Engineers (USACE)
 Shore Protection Manual by US Army Coastal Engineering Research Center

Fall semester L-4, T-II

Sessional (Elective)

Sessional (Elect													
COURSE INF	FORMATION												
Course Code Course Title	: CE 472 : Hydraulic Structu Sessional	re De	sign				act ho it hou					3.00 1.50	
PRE-REQUIS	SITE												
None													
CURRICULU	M STRUCTURE												
Outcome Base	d Education (OBE)												
SYNOPSIS/R	ATIONALE												
(hydrologic, hy	sessional, students c ydraulic, structural a professional life.												
OBJECTIVE													
requirement • To become COURSE CO Details design of a drainage re	of a hydraulic struct egulator.	ure: h	const ydro]	ructi	on of , hyd	f diffei	ent h	ydrau	lic str	uctu	res.	ı desi	ign
	TCOMESAND SK	ILL I	MAP	PIN	G								
No. COURSE (COs)	E OUTCOMES		1	P	ROG	RAMN	AE OU	JTCO	MES (POs)		
		PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012
requiren hydrolog structura	tand the basic nents of gic, hydraulic and al design of a c structure.												
cross-see	in details and draw ctions of different s of a hydraulic e.			\checkmark									
Program Out	comes (PO):												

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**:

Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COURSE OUTCOMES AND GENERIC SKILLS

	NSE OUTCOMES AND GI		SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	Ь	A	K	Assessment Methods
CO1	Understand the basic requirements of hydrologic, hydraulic and structural design of a hydraulic structure.	1	C2	1	-	5	Lab Report + Quiz+ Viva
CO2	Design in details and draw cross-sections of different elements of a hydraulic structure.	3	C3	1,7	-	3, 5	Lab Report + Quiz + Viva

Knowledge Profile (K):

K1: Natural sciences, **K2**: Mathematics, **K3**: Engineering fundamentals, **K4**: Specialist knowledge, **K5**: Engineering design, **K6**: Engineering practice, **K7**: Comprehension, **K8**: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning Lecture (3 hours/week x 10 weeks)	30
Guided Learning Report Writing (1 hour/week x 9 weeks)	01
Independent Learning	10
Individual learning	08
Assessment	2
Quiz +Group Presentation	

Total				60
TEACH	HING METH	ODOLOGY		
Lecture	and Discussio	on, Design Calculation, Drav	ving	
TEACH	HING SCHE	DULE		
Week	Lectures	Topics		Assessments
1	1	Introduction to hydraulic st design requirements	ructure design and	Lab Manual, Lecture notes,
2	2	Development of 6-h Unit H Computation of Runoff Hyd	Reference texts etc.	
3	3			
4	4			
5	5			
6	6	Flow beneath a Sluice Gate		
7	7	Mid Quiz		
8	8	Determination of Floor Thi Gradient Design of Launching Apror		
9	9	Total Load Calculation Determination of Factor of		
10	10	Reinforcement Detailing of	Top and Bottom Slab	
11	11	Design of Abutment and Pi	er	
12	12	Design of Retaining Wall		
13	13	Final Quiz + Group Presentati	on	
ASSES	SMENT STR	ATEGY		
Compos	nents	Grading	СО	Blooms Taxonomy
Continu Assessn (Conduc Lab Rep	nent ct Lab Test &	40%	CO1, CO2	C2, C3
		60%	CO 1	C2

Quiz &Group presentation		CO 2	C3
Total Marks	100%		
REFERENCE BOOKS	5		
 Hydraulic Structures Principles of Design 			

Project and Thesis Level-4 Spring and Fall Semester

COURSE INFORMATION Course Code : CE 400 Contact hours : 2 hrs/week in 4/I and 6 hrs/week in 4/II Course Title : Project and Thesis Credit hours : 4.00 credit PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course will help students to understand the research process with the help of relevant literature review, experimentation, and in-depth investigation in structural engineering, environmental engineering, transportation engineering, geotechnical engineering, and water resource engineering. Students will develop critical thinking capacity and improve communication and analytical skills. Students will be able to create a proper engineering project work as per the engineering dissertation/ thesis format.

OBJECTIVE

- To acquire knowledge about the research process with the help of a relevant literature review
- To solve a problem individually or as a team with guidance from the supervisor(s) through experiment and/or detail investigation

COURSE CONTENT

Experimental, numerical and/or theoretical investigation of various topics in structural engineering, environmental engineering, transportation engineering, geotechnical engineering, and water resource engineering. Individual or group study of one or more topics from any of the above fields. The students will be required to submit a thesis report at the end of the work and present his/her work in front of a board consists of faculty member(s).

COURSE OUTCOMESAND SKILL MAPPING

No.	COURSE OUTCOMES			I	PRO	GRAN	MME	OUT	COM	1ES (1	POs)		
	(COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	909	PO10	P011	P012
1	Ability to compose the problem statements with research gap and objectives of the project/thesis												
2	Ability to conduct a literature review to develop research methodology using standard references, including conference		\checkmark										

	proceedings, journals, theses, books etc.						
3	Ability to communicate through proposal writing following standard format and performs verbal presentation						
4	Ability to conduct research experiments, analyze and interpret data and deduce conclusion based on knowledge in the broadest context		\checkmark				
5	Ability to conduct the study and write report without conflicting with the engineering and professional principles and ethics				\checkmark		
6	Ability to plan activities pertaining to research and execute the plan to meet the required objectives which indicates lifelong learning						\checkmark
7	Ability to write research report that conforms to standard thesis format and performs verbal presentation ram Outcomes (PO):						

Program Outcomes (PO):

PO1: Engineering knowledge, **PO2**: Problem analysis, **PO3**: Design/development of solutions, **PO4**: Investigation, **PO5**: Modern tool usage, **PO6**: The engineer and society, **PO7**: Environment and sustainability, **PO8**: Ethics, **PO9**: Individual and teamwork, **PO10**: Communication, **PO11**: Project management and finance, **PO12**: Life-long learning

COUR	SE OUTCOMES AND GEN	ERIC	SKILLS				
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	d	Y	K	Assessment Methods
CO1	Ability to compose the problem statements with research gap and objectives of the project/thesis	2	C1	1	-	8	Proposal Writing + Presentation

CO2	Ability to conduct a literature review to develop research methodology using standard references, including conference proceedings, journals, theses, books etc.	2	C2	1	3	8	Proposal Writing + Presentation
CO3	Ability to communicate through proposal writing following standard format and performs verbal presentation	10	C2	-	-	-	Proposal Writing + Presentation
CO4	Ability to conduct research experiments, analyze and interpret data and deduce conclusion based on knowledge in the broadest context	4	C6	1, 3	1, 3	3, 7	Report Writing + Presentation
CO5	Ability to conduct the study and write report without conflicting with the engineering and professional principles and ethics	8	C5	_	-	-	Plagiarism Software
CO6	Ability to plan activities pertaining to research and execute the plan to meet the required objectives which indicates lifelong learning	12	C5	-	_	-	Report Writing + Presentation
C07	Ability to write research report that conforms to standard thesis format and performs verbal presentation	10	C2	-	-	7	Report Writing + Presentation

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand,	C3: Apply, C	4: Analy	ze, C5: Evaluate	e, C6 : Create				
TEACHING LEARNING STRA	TEGY							
Teaching and Learning Activities			Eng	agement (hours)				
Face to Face Learning 2 hrs/week in 4/I and 6 hrs/week in	n 4/II			40				
Guided Learning Experimentation/Modeling			100					
Independent Learning Individual learning Preparation for Viva and presentat	ion			14 3				
Assessment Proposal Thesis Presentation				0.5 1.5 1				
Total	7		160					
TEACHING METHODOLOGY								
Analytical/ Experimental/ Modelin	ng							
TEACHING SCHEDULE Guided by a Supervisor CO1 – CO3: in 4/I and CO4 – CO ASSESSMENT STRATEGY	7: in 4/II							
Components	Grading		СО	Blooms Taxonomy				
Proposal Writing with Presentation	20%	CO	1, CO2, CO3	C1, C2				
Thesis Writing	35%	CO	4, CO6, CO7	C5, C6,				
Thesis Presentation	25%	CO	4, CO6, CO7	C5, C6				
Ethics	10%		CO5	C5				
LLL	10%		CO6	C5				
Total Marks	100%							

Capstone Project Level-4 Spring and Fall Semester

COURSE INFORMATION Contact hours Course Code : CE 450 Course Title : Capstone Project

: 2 hrs/week in 4/I and 4 hrs/week in 4/II : 3.00 credit

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Planning, analysis, and design of an integrated civil engineering project with emphasis on structural engineering/ environmental engineering/ transportation engineering/ geotechnical engineering/ water resources engineering specialization. Students shall work in teams to apply civil engineering aspects to assess the technical, environmental, and social feasibility of the project including design and cost estimation. Students shall present and submit reports at different stages of the project work.

Credit hours

OBJECTIVE

- To acquire knowledge about an integrated design project considering health and safety, society and culture, environment and sustainability, cost effectiveness
- To design a detail project that includes various infrastructural elements complying codes of • practices and guidelines set by authorities

COURSE CONTENT

Capstone I: This course is the first part to an Integrated Design Project. The course aims to synergies all the basic engineering knowledge gained previously to solve real civil engineering problems in an integrated and comprehensive manner. Students will be first exposed to the importance of good design concepts that considers important characteristics including public health and safety, society and culture, environment and sustainability, authorities' requirements, as well as project cost effectiveness. Students will work in groups to observe existing project to evaluate the pros and cons of project characteristics. Each group will propose design concepts for earthworks, retaining structures, drainage, roads, water supply and sewerage systems etc. whatever required. Preparation and presentation of report will be done at the end of the course by the students.

Capstone II: This course is a continuation of the Integrated Design Project I. It is referred to as a capstone project that integrates the various knowledge and skills in the various fields and core disciplines within Civil Engineering. Students are tasked to work in groups to develop the design of integrated infrastructural and structural elements for a development project from inception of the concepts until the production of detailed design and drawings. Aspects of environment and sustainability, public health and safety, culture and society, and cost effectiveness are to be considered in the process. The project includes various infrastructural elements such as platforms (earthworks), erosion control plan, slope stability/retaining, roads, drainage, detention pond, water supply, sewerage systems, and structural and foundation systems, including any other required elements. The design must comply with criteria set by the relevant Codes of Practice, and guidelines and conditions set by authorities, technical departments and professional bodies, as well as other requirements related to the public and society. Students are required to produce group design report and perform presentation. The successful implementation of the design project requires close cooperation between all team members. Hence, it is important for students to assume full responsibility in executing individual assignments and at the same time possess good team spirit to ensure the success of the project.

COU	RSE OUTCOMESAND SKIL	LM	[API	PING	r F								
No.	COURSE OUTCOMES			I	PRO	GRAN	MME	OUT	COM	1ES (1	POs)		
	(COs)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012
1	Abletodeveloppreliminarydesignconcepts of integrated CivilEngineeringprojectmakesappropriateconsiderationofprojectmanagement,costeffectiveness,authorities' requirements.												
2	Able to describe project's authorities' conditions and other relevant needs related to "Engineers and Society".						\checkmark						
3	Able to produce report and present preliminary design concept of the integrated project.										\checkmark		
4	Able to critically assess and evaluate the project site with respect to gained knowledge and field data analysis		\checkmark										
5	Able to develop integrated project design solutions that considers environment and sustainability, public health and safety, culture and society, and cost effectiveness, etc. by applying relevant codes of practice and guidelines			V									
6	Able toruncomputersoftwares in the designprocess,process,preparationofdrawings,reportsandpresentations(Excel,												

√	
√	
√	
√	
√	
~	
~	
√	
√	
√	
√	
√	√
	√
	√
	√
	√
	√
	t of solutions,
	07 : Environment
nmuni	ication, PO11 :
	nt
	Assessment Methods
	Assessm Methods
	Aet
K	A A
	Proposal
3.4	Topobul
3, 4	
3, 4	
	⊻ 3,4

cost

management,

	effectiveness, and						
	authorities' requirements.						
CO2	Able to describe project's authorities' conditions and other relevant needs related to "Engineers and Society".	6	C2	6	4	-	Proposal
CO3	Able to produce report and present preliminary design concept of the integrated project.	10	-	-	-	-	Proposal + Presentation
CO4	Able to critically assess and evaluate the project site with respect to gained knowledge and field data analysis	2	C5	1, 3	2	3	Report
CO5	Able to develop integrated project design solutions that considers environment and sustainability, public health and safety, culture and society, and cost effectiveness, etc. by applying relevant codes of practice and guidelines	3	C6	1, 5	1, 2	5, 6	Report
CO6	Able to run computer softwares in the design process, preparation of drawings, reports and presentations (Excel, AutoCAD and other design softwares)	5	-	1, 3	3	4, 5	Report + Presentation
CO7	Able to produce presentable capstone project report containing executive summary, introduction, tasks distribution, concepts, design calculations, drawings, conclusions, etc and present verbally in presentation session or interview	10	-	-	-	7	Presentation
CO8	Able to perform tasks individually and be an effective group member	9	-	-	_	-	Observation
CO9	Able to apply strategies to achieve cost effectiveness,	11	C3	1, 2	_	-	Report

	and estimating cost of selected components						
CO10	Abletoproduceinfrastructuralandstructuralelementsdesignthatthatconsidersthatconsiderstheeffectonenvironmentanddemonstrateknowledgesensitivitytowardssustainabledevelopment	7	C6	1, 6	3, 4	5	Report

Knowledge Profile (K):

K1: Natural sciences, K2: Mathematics, K3: Engineering fundamentals, K4: Specialist knowledge,K5: Engineering design, K6: Engineering practice, K7: Comprehension, K8: Research literature

Complex Engineering Problem (P):

P1: Depth of knowledge required, **P2**: Range of conflicting requirements, **P3**: Depth of analysis required, **P4**: Familiarity of issues, **P5**: Extent of applicable codes, **P6**: Extent of stakeholder involvement and conflicting requirements, **P7**: Interdependence

Complex Engineering Activities (A):

A1: Range of resources, A2: Level of interactions, A3: Innovation, A4: Consequences to society and the environment, A5: Familiarity

Bloom's Taxonomy Levels:

C1: Remember, C2: Understand, C3: Apply, C4: Analyze, C5: Evaluate, C6: Create

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)				
Face to Face Learning	40				
2 hrs/week in 4/I and 6 hrs/week in 4/II	40				
Guided Learning	60				
Data Collection/ Analysis/ Model Study	60				
Independent Learning					
Individual learning	10				
Preparation for Viva and presentation	5				
Assessment	1				
Proposal	1 3				
Report	5				
Presentation	1				
Total	120				
TEACHING METHODOLOGY					
Analytical/ Experimental/ Modeling					

TEACHING SCHEDULE

Guided by a Group of Supervisors

CO1 - CO3: in 4/I and CO4 - CO10: in 4/II

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy		
Proposal Writing with Presentation	20%	CO1, CO2, CO3	C2, C6		
Report	50%	CO4, CO5, CO9, CO10	C3, C5, C6,		
Presentation	30%	CO6, CO7, CO8	-		
Total Marks	100%				

REFERENCE BOOKS

- 1. Gould F. E. and Joyce N. E. 2003. Construction Project Management. 2nd Ed. Prentice Hall.
- 2. Colin Harding, Chartered Institute of Building, 2015. Integrated Design and Construction. Wiley Blackwell
- 3. Brad Hardin & Dave McCool, 2014. BIM and Construction Management: Proven Tools, Methods, and Workflows, 2nd Edition.
- 4. Saleh A. Mubarak, 2015. Construction Project Scheduling and Control, 3rd Edition.
- 5. American Water Works Association / American Society of Civil Engineer, 2012. Water Treatment Plant Design. 5th Edition. McGraw Hill.
- 6. Shun Dar Lin, 2007. Water and Wastewater Calculations Manual. 2nd Edition. McGraw Hill.
- 7. Metcalf and Eddy, Wastewater Engineering 2016: Treatment Disposal and Reuse. 4th Edition. McGraw Hill.

Additional References:

Building Information Modelling (BIM) Aspects:

- 1. Karen, K. and Douglas, N., "Building Information Modelling: BIM in Current and Future Practice", 1st edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2014.
- 2. Robert, S.W., "BIM Content Development: Standards, Strategies, and Best Practices", John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2011.
- 3. Darren, R., "Computer Modelling for Sustainable Urban Design", Earthscan, Abingdon, Oxon, UK, 2011.
- 4. Nawari, O.N., "Building Information Modelling: Framework for Structural Design", Apple Academic Press Inc., Waretown, New Jersey, USA, 2015.
- 5. Eddy, K. and James, V., "Mastering Autodesk Revit Architecture 2015: Autodesk Official Press", John Wiley & Sons, Inc., Indianapolis, Indiana, USA, 2015.

Structural (RC and Steel Design) Aspects:

- 1. Design of Concrete Structures by Nilson, David & Dolan (15th Edition)
- 2. Bhatt, P., MacGinley, T.J., and Choo, B.S., "Reinforced Concrete Design to Eurocodes: Design Theory and Examples", 4th edition, CRC, New York, USA, 2014.
- 3. Lam, D., Ang, T.C. and Chiew, S.P., "Structural Steelwork: Design to Limit State Theory", 4th edition, CRC Press, Taylor & Francis Group, London, UK, 2014.
- 4. Gardner, L. and Nethercot, D.A., "Designers' Guide to Eurocode 3: Design of Steel Structures – Designers' Guide to EN 1993-1-1 Eurocode 3: Design of Steel Structures General Rules and Rules for Buildings", Thomas Telford, London, UK, 2005.

5. Draycott, T. and Bullman, P., "Structural Elements Design Manual: Working with Eurocodes", 2nd edition, Butterworth-Heinemann, Oxford, UK, 2009.

Construction Aspects:

- 1. Gould, F.E. "Managing the Construction Process", Prentice Hall, 4th edition 2011.
- 2. Hinze, J.W. "Construction Planning and Scheduling", Prentice Hall, 2011.
- 3. Callahan, M.T. "Construction Project Scheduling", McGraw-Hill, 1992.
- 4. A Guide to the Project Management Body of Knowledge (Pmbok Guide) 5th edition, Project Management Institute Inc., 2013.

Geotechnical Aspects:

- 1. Coduto, D.P., "Foundation Design Principles and Practices", 2nd edition, Prentice Hall, 2001.
- 2. Craig, R.F. and Knappett, J.A., "Craig's Soil Mechanics", 8th edition, Spon Press, 2012.
- 3. Das, B.M., "Principles of Foundation Engineering", 8th edition, Cengage Learning, 2016.